Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianxing Zhang is active.

Publication


Featured researches published by Jianxing Zhang.


Biomaterials | 2010

Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates.

Aleksander Skardal; Jianxing Zhang; Glenn D. Prestwich

Bioprinting enables deposition of cells and biomaterials into spatial orientations and complexities that mirror physiologically relevant geometries. To facilitate the development of bioartificial vessel-like grafts, two four-armed polyethylene glycol (PEG) derivatives with different PEG chain lengths, TetraPEG8 and TetraPEG13, were synthesized from tetrahedral pentaerythritol derivatives. The TetraPEGs are unique multi-armed PEGs with a compact and symmetrical core. The TetraPEGs were converted to tetra-acrylate derivatives (TetraPAcs) which were used in turn to co-crosslink thiolated hyaluronic acid and gelatin derivatives into extrudable hydrogels for printing tissue constructs. First, the hydrogels produced by TetraPAc crosslinking showed significantly higher shear storage moduli when compared to PEG diacrylate (PEGDA)-crosslinked synthetic extracellular matrices (sECMs) of similar composition. These stiffer hydrogels have rheological properties more suited to bioprinting high-density cell suspensions. Second, TetraPAc-crosslinked sECMs were equivalent or superior to PEGDA-crosslinked gels in supporting cell growth and proliferation. Third, the TetraPac sECMs were employed in a proof-of-concept experiment by encapsulation of NIH 3T3 cells in sausage-like hydrogel macrofilaments. These macrofilaments were then printed into tubular tissue constructs by layer-by-layer deposition using the Fab@Home printing system. LIVE/DEAD viability/cytotoxicity-stained cross-sectional images showed the bioprinted cell structures to be viable in culture for up to 4 weeks with little evidence of cell death. Thus, biofabrication of cell suspensions in TetraPAc sECMs demonstrates the feasibility of building bioartificial blood vessel-like constructs for research and potentially clinical uses.


Advanced Materials | 2010

Dynamically Crosslinked Gold Nanoparticle – Hyaluronan Hydrogels

Aleksander Skardal; Jianxing Zhang; Lindsi McCoard; Siam Oottamasathien; Glenn D. Prestwich

Bioprinting employs three-dimensional (3D) deposition of cells and biomaterials to create organized structures with organappropriate architecture. Such engineered organs could offer alternatives to inadequate donor organ supplies, [ 1 , 2 ] and bioprinted human tissues could improve predictability during preclinical evaluation of therapeutic agents. [ 3 ] However, scalability of bioprinting is limited by lack of extrudable, biocompatible materials that can retain form, be remodeled by cells, be removed to create lumens, and offer layer-to-layer connectivity following assembly. To address these needs, we developed dynamically crosslinkable materials using gold nanoparticles (AuNPs) as multivalent crosslinkers. Specifi cally, 24 nm AuNPs and thiolmodifi ed biomacromonomers derived from hyaluronic acid (HA) and gelatin were used to form printable semi-synthetic extracellular matrix (sECM) hydrogels. AuNP-sECMs are unique in having dynamic crosslinks; that is, both intra-gel and inter-gel covalent interactions can form and reform during and after printing. Moreover, AuNP-thiol crosslinking is reversible in the presence of benign thiols such as cysteine. In a proof-ofconcept experiment, AuNP-sECMs were used to print tubular tissue constructs using an automated bioprinting system. In bioprinting, cells (the “bio-ink”) and hydrogels (the “biopaper”) are deposited into precise 3D geometries by a 3-axis printer in a fashion enabling maturation into functional tissues. [ 4,5 ] Recently, cell aggregates and cell rods were printed into tubular assemblies that fused into seamless structures. [ 6,7 ]


Biomaterials | 2008

Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery.

Jianxing Zhang; Aleksander Skardal; Glenn D. Prestwich

An unmet need for expansion of primary cells and progenitor cells in three dimensions (3-D) is a synthetic mimic of the extracellular matrix (ECM) with user-controllable composition that would permit rapid recovery of viable cells under mild, non-enzymatic conditions. Three block copolymers based on disulfide-containing polyethylene glycol diacrylate crosslinkers were synthesized, and were used to crosslink thiol-modified hyaluronan and gelatin macromonomers in the presence of cells. The triblock PEGSSDA contained a single disulfide-containing block, the pentablock PEG(SS)(2)DA contained two disulfide blocks, and the heptablock PEG(SS)(3)DA contained three disulfide blocks. For each hydrogel composition, four cell types were encapsulated in 3-D, and growth and proliferation were evaluated. Murine NIH 3T3 fibroblasts, human HepG2 C3A hepatocytes, human bone marrow-derived mesenchymal stem cells (MSCs), and human umbilical vein endothelial cells (HUVECs) all showed excellent viability and growth during expansion in 3-D in the three disulfide block copolymer crosslinkers. After cell expansion, the hydrogels were dissociated using the thiol-disulfide exchange reaction in the presence of N-acetyl-cysteine or glutathione, which dissolved the hydrogel network. After dissolution, cells were recovered in high yield and with high viability by gentle centrifugation.


PLOS ONE | 2011

Novel Sulfated Polysaccharides Disrupt Cathelicidins, Inhibit RAGE and Reduce Cutaneous Inflammation in a Mouse Model of Rosacea

Jianxing Zhang; Xiaoyu Xu; Narayanam V. Rao; Brian Argyle; Lindsi McCoard; William J. Rusho; Thomas P. Kennedy; Glenn D. Prestwich; Gerald G. Krueger

Background Rosacea is a common disfiguring skin disease of primarily Caucasians characterized by central erythema of the face, with telangiectatic blood vessels, papules and pustules, and can produce skin thickening, especially on the nose of men, creating rhinophyma. Rosacea can also produce dry, itchy eyes with irritation of the lids, keratitis and corneal scarring. The cause of rosacea has been proposed as over-production of the cationic cathelicidin peptide LL-37. Methodology/Principal Findings We tested a new class of non-anticoagulant sulfated anionic polysaccharides, semi-synthetic glycosaminoglycan ethers (SAGEs) on key elements of the pathogenic pathway leading to rosacea. SAGEs were anti-inflammatory at ng/ml, including inhibition of polymorphonuclear leukocyte (PMN) proteases, P-selectin, and interaction of the receptor for advanced glycation end-products (RAGE) with four representative ligands. SAGEs bound LL-37 and inhibited interleukin-8 production induced by LL-37 in cultured human keratinocytes. When mixed with LL-37 before injection, SAGEs prevented the erythema and PMN infiltration produced by direct intradermal injection of LL-37 into mouse skin. Topical application of a 1% (w/w) SAGE emollient to overlying injected skin also reduced erythema and PMN infiltration from intradermal LL-37. Conclusions Anionic polysaccharides, exemplified by SAGEs, offer potential as novel mechanism-based therapies for rosacea and by extension other LL-37-mediated and RAGE-ligand driven skin diseases.


The Journal of Urology | 2011

A Murine Model of Inflammatory Bladder Disease: Cathelicidin Peptide Induced Bladder Inflammation and Treatment With Sulfated Polysaccharides

Siam Oottamasathien; Wanjian Jia; Lindsi McCoard; Sean Slack; Jianxing Zhang; Aleksander Skardal; Kathleen M. Job; Thomas P. Kennedy; Randal O. Dull; Glenn D. Prestwich

PURPOSE Studies show that LL-37 is a naturally occurring urinary defensin peptide that is up-regulated during urinary tract infections. Although normal urinary LL-37 levels are antimicrobial, we propose that increased LL-37 may trigger bladder inflammation. We further suggest that anti-inflammatory sulfated polysaccharides known as semi-synthetic glycosaminoglycan ether compounds can treat/prevent LL-37 mediated bladder inflammation. MATERIALS AND METHODS C57BL/6 mice were catheterized/instilled with LL-37 (320 μM, 150 μl) for 45 minutes. Animals were sacrificed at 12 and 24 hours, and tissues were examined using hematoxylin and eosin. Separate experiments were performed for myeloperoxidase to quantify inflammation. GM-1111 semi-synthetic glycosaminoglycan ether treatments involved instillation of 10 mg/ml for 45 minutes directly before or after LL-37. Tissues were harvested at 24 hours. To compare semi-synthetic glycosaminoglycan ether efficacy, experiments were performed using 10 mg/ml heparin. Finally, tissue localization of semi-synthetic glycosaminoglycan ether was examined using a fluorescent GM-1111-Alexa Fluor® 633 conjugate. RESULTS Profound bladder inflammation developed after LL-37. Greater tissue inflammation occurred after 24 hours compared to that at 12 hours. Myeloperoxidase assays revealed a 21 and 61-fold increase at 12 and 24 hours, respectively. Semi-synthetic glycosaminoglycan ether treatment after LL-37 showed mild attenuation of inflammation with myeloperoxidase 2.5-fold below that of untreated bladders. Semi-synthetic glycosaminoglycan ether treatment before LL-37 demonstrated almost complete attenuation of inflammation. Myeloperoxidase results mirrored those in controls. In heparin treated bladders minimal attenuation of inflammation occurred. Finally, instillation of GM-1111-Alexa Fluor 633 revealed urothelial coating, significant tissue penetration and binding to endovasculature. CONCLUSIONS We developed what is to our knowledge a new model of inflammatory bladder disease by challenge with the naturally occurring urinary peptide LL-37. We also noted that a new class of anti-inflammatory sulfated polysaccharides prevents and mitigates bladder inflammation.


Journal of the American Chemical Society | 2013

Exploiting Differential Surface Display of Chondroitin Sulfate Variants for Directing Neuronal Outgrowth

Vimal P. Swarup; Tony W. Hsiao; Jianxing Zhang; Glenn D. Prestwich; Balagurunathan Kuberan; Vladimir Hlady

Chondroitin sulfate (CS) proteoglycans (CSPGs) are known to be primary inhibitors of neuronal regeneration at scar sites. However, a variety of CSPGs are also involved in neuronal growth and guidance during other physiological stages. Sulfation patterns of CS chains influence their interactions with various growth factors in the central nervous system (CNS), thus influencing neuronal growth, inhibition, and pathfinding. This report demonstrates the use of differentially sulfated CS chains for neuronal navigation. Surface-immobilized patterns of CS glycosaminoglycan chains were used to determine neuronal preference toward specific sulfations of five CS variants: CS-A, CS-B (dermatan sulfate), CS-C, CS-D, and CS-E. Neurons preferred CS-A, CS-B, and CS-E and avoided CS-C containing lanes. In addition, significant alignment of neurites was observed using underlying lanes containing CS-A, CS-B, and CS-E chains. To utilize differential preference of neurons toward the CS variants, a binary combinations of CS chains were created by backfilling a neuro-preferred CS variant between the microcontact printed lanes of CS-C stripes, which are avoided by neurons. The neuronal outgrowth results demonstrate for the first time that a combination of sulfation variants of CS chains without any protein component of CSPG is sufficient for directing neuronal outgrowth. Biomaterials with surface immobilized GAG chains could find numerous applications as bridging devices for tackling CNS injuries where directional growth of neurons is critical for recovery.


PLOS ONE | 2013

Prevention of Anti-microbial Peptide LL-37-Induced Apoptosis and ATP Release in the Urinary Bladder by a Modified Glycosaminoglycan

Won Yong Lee; Justin R. Savage; Jianxing Zhang; Wanjian Jia; Siam Oottamasathien; Glenn D. Prestwich

Interstitial cystitis (IC), often referred to in combination with painful bladder syndrome, is a chronic inflammatory disease of the bladder. Current therapies primarily focus on replenishing urothelial glycosaminoglycan (GAG) layer using GAG analogs and managing pain with supportive therapies. However, the elusive etiology of IC and the lack of animal models to study the disease have been major hurdles developing more effective therapeutics. Previously, we showed an increased urinary concentration of antimicrobial peptide LL-37 in spina bifida patients and used LL-37 to develop a mouse model of cystitis that mimics important clinical findings of IC. Here we investigate (1) the molecular mechanism of LL-37 induced cystitis in cultured human urothelial cells and in mice, (2) the protective effects of GM-0111, a modified GAG, within the context of this mechanism, (3) the physiological and molecular markers that correlate with the severity of the inflammation, and (4) the protective effects of several GAGs using these biomarkers in our LL-37 induced cystitis model. We find that LL-37 quickly induces release of ATP and apoptosis in the urothelium. These changes can be inhibited by a chemically-modified GAG, GM-0111. Furthermore, we also find that GAG analogs provide varying degrees of protection against LL-37 challenge in mice. These findings suggest that GM-0111 and possibly GAG molecules prevent the development of cystitis by blocking the apoptosis and the concurrent release of ATP from the urothelium.


International Journal of Cell Biology | 2015

Carboxymethyl Hyaluronan-Stabilized Nanoparticles for Anticancer Drug Delivery

Jessica L. Woodman; Min Sung Suh; Jianxing Zhang; Yuvabharath Kondaveeti; Diane J. Burgess; Bruce A. White; Glenn D. Prestwich; Liisa T. Kuhn

Carboxymethyl hyaluronic acid (CMHA) is a semisynthetic derivative of HA that is recognized by HA binding proteins but contains an additional carboxylic acid on some of the 6-hydroxyl groups of the N-acetyl glucosamine sugar units. These studies tested the ability of CMHA to stabilize the formation of calcium phosphate nanoparticles and evaluated their potential to target therapy resistant, CD44+/CD24−/low human breast cancer cells (BT-474EMT). CMHA stabilized particles (nCaPCMHA) were loaded with the chemotherapy drug cis-diamminedichloroplatinum(II) (CDDP) to form nCaPCMHACDDP. nCaPCMHACDDP was determined to be poorly crystalline hydroxyapatite, 200 nm in diameter with a −43 mV zeta potential. nCaPCMHACDDP exhibited a two-day burst release of CDDP that tapered resulting in 86% release by 7 days. Surface plasmon resonance showed that nCaPCMHACDDP binds to CD44, but less effectively than CMHA or hyaluronan. nCaPCMHA-AF488 was taken up by CD44+/CD24− BT-474EMT breast cancer cells within 18 hours. nCaPCMHACDDP was as cytotoxic as free CDDP against the BT-474EMT cells. Subcutaneous BT-474EMT tumors were more reproducibly inhibited by a near tumor dose of 2.8 mg/kg CDDP than a 7 mg/kg dose nCaPCMHACDDP. This was likely due to a lack of distribution of nCaPCMHACDDP throughout the dense tumor tissue that limited drug diffusion.


International Forum of Allergy & Rhinology | 2015

Topical cathelicidin (LL-37) an innate immune peptide induces acute olfactory epithelium inflammation in a mouse model.

Jeremiah A. Alt; Xuan Qin; Abigail Pulsipher; Quinn Orb; Richard R. Orlandi; Jianxing Zhang; Austin Schults; Wanjian Jia; Angela P. Presson; Glenn D. Prestwich; Siam Oottamasathien

Cathelicidin (LL‐37) is an endogenous innate immune peptide that is elevated in patients with chronic rhinosinusitis (CRS). The role of LL‐37 in olfactory epithelium (OE) inflammation remains unknown. We hypothesized that: (1) LL‐37 topically delivered would elicit profound OE inflammation; and (2) LL‐37 induced inflammation is associated with increased infiltration of neutrophils and mast cells.


Bioorganic & Medicinal Chemistry | 2015

Vinyl sulfone analogs of lysophosphatidylcholine irreversibly inhibit autotaxin and prevent angiogenesis in melanoma

Mandi M. Murph; Guowei W. Jiang; Molly K. Altman; Wei Jia; Duy Nguyen; Jada M. Fambrough; William J. Hardman; Ha T. Nguyen; Sterling K. Tran; Ali A. Alshamrani; Damian Madan; Jianxing Zhang; Glenn D. Prestwich

Autotaxin (ATX) is an enzyme discovered in the conditioned medium of cultured melanoma cells and identified as a protein that strongly stimulates motility. This unique ectonucleotide pyrophosphatase and phosphodiesterase facilitates the removal of a choline headgroup from lysophosphatidylcholine (LPC) to yield lysophosphatidic acid (LPA), which is a potent lipid stimulator of tumorigenesis. Thus, ATX has received renewed attention because it has a prominent role in malignant progression with significant translational potential. Specifically, we sought to develop active site-targeted irreversible inhibitors as anti-cancer agents. Herein we describe the synthesis and biological activity of an LPC-mimetic electrophilic affinity label that targets the active site of ATX, which has a critical threonine residue that acts as a nucleophile in the lysophospholipase D reaction to liberate choline. We synthesized a set of quaternary ammonium derivative-containing vinyl sulfone analogs of LPC that function as irreversible inhibitors of ATX and inactivate the enzyme. The analogs were tested in cell viability assays using multiple cancer cell lines. The IC50 values ranged from 6.74 to 0.39 μM, consistent with a Ki of 3.50 μM for inhibition of ATX by the C16H33 vinyl sulfone analog CVS-16 (10b). A phenyl vinyl sulfone control compound, PVS-16, lacking the choline-like quaternary ammonium mimicking head group moiety, had little effect on cell viability and did not inhibit ATX. Most importantly, CVS-16 (10b) significantly inhibited melanoma progression in an in vivo tumor model by preventing angiogenesis. Taken together, this suggests that CVS-16 (10b) is a potent and irreversible ATX inhibitor with significant biological activity both in vitro and in vivo.

Collaboration


Dive into the Jianxing Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas P. Kennedy

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge