Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianya Zhao is active.

Publication


Featured researches published by Jianya Zhao.


Toxicology | 2013

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces microglial nitric oxide production and subsequent rat primary cortical neuron apoptosis through p38/JNK MAPK pathway.

Yuanye Li; Gang Chen; Jianya Zhao; Xiaoke Nie; Chunhua Wan; Jiao Liu; Zhiqing Duan; Guangfei Xu

It has been widely accepted that microglia, which are the innate immune cells in the brain, upon activation can cause neuronal damage. In the present study, we investigated the role of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in regulating microglial nitric oxide production and its role in causing neuronal damage. The study revealed that TCDD stimulates the expression of inducible nitric oxide synthase (iNOS) as well as the production of nitric oxide (NO) in a dose- and time-dependent manner. Further, a rapid activation of p38 and JNK MAPKs was found in HAPI microglia following TCDD treatment. Blockage of p38 and JNK kinases with their specific inhibitors, SB202190 and SP600125, significantly reduced TCDD-induced iNOS expression and NO production. In addition, it was demonstrated through treating rat primary cortical neurons with media conditioned with TCDD treated microglia that microglial iNOS activation mediates neuronal apoptosis. Lastly, it was also found that p38 and JNK MAPK inhibitors could attenuate the apoptosis of rat cortical neurons upon exposure to medium conditioned by TCDD-treated HAPI microglial cells. Based on these observations, we highlight that the p38/JNK MAPK pathways play an important role in TCDD-induced iNOS activation in rat HAPI microglia and in the subsequent induction of apoptosis in primary cortical neurons.


PLOS ONE | 2014

2, 3, 7, 8-Tetrachlorodibenzo-P-Dioxin (TCDD) Induces Premature Senescence in Human and Rodent Neuronal Cells via ROS-Dependent Mechanisms

Chunhua Wan; Jiao Liu; Xiaoke Nie; Jianya Zhao; Songlin Zhou; Zhiqing Duan; Cuiying Tang; Lingwei Liang; Guangfei Xu

The widespread environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that causes significant neurotoxicity. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that TCDD exposure triggered apparent premature senescence in rat pheochromocytoma (PC12) and human neuroblastoma SH-SY5Y cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that TCDD induced senescence in PC12 neuronal cells at doses as low as 10 nM. TCDD led to F-actin reorganization and the appearance of an alternative senescence marker, γ-H2AX foci, both of which are important features of cellular senescence. In addition, TCDD exposure altered the expression of senescence marker proteins, such as p16, p21 and p-Rb, in both dose- and time-dependent manners. Furthermore, we demonstrated that TCDD promotes mitochondrial dysfunction and the accumulation of cellular reactive oxygen species (ROS) in PC12 cells, leading to the activation of signaling pathways that are involved in ROS metabolism and senescence. TCDD-induced ROS generation promoted significant oxidative DNA damage and lipid peroxidation. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and neuronal senescence. Moreover, we found that TCDD induced a similar ROS-mediated senescence response in human neuroblastoma SH-SY5Y cells. In sum, these results demonstrate for the first time that TCDD induces premature senescence in neuronal cells by promoting intracellular ROS production, supporting the idea that accelerating the onset of neuronal senescence may be an important mechanism underlying TCDD-induced neurotoxic effects.


Toxicology and Applied Pharmacology | 2014

Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis

Chunhua Wan; Xa Ma; Shangshi Shi; Jianya Zhao; Xiaoke Nie; Jingling Han; Jing Xiao; Xiaoke Wang; Shengyang Jiang; Junkang Jiang

Chronic exposure to excessive manganese (Mn) has been known to lead to neuronal loss and a clinical syndrome resembling idiopathic Parkinsons disease (IPD). p53 plays an integral role in the development of various human diseases, including neurodegenerative disorders. However, the role of p53 in Mn-induced neuronal apoptosis and neurological deficits remains obscure. In the present study, we showed that p53 was critically involved in Mn-induced neuronal apoptosis in rat striatum through both transcription-dependent and -independent mechanisms. Western blot and immunohistochemistrical analyses revealed that p53 was remarkably upregulated in the striatum of rats following Mn exposure. Coincidentally, increased level of cleaved PARP, a hallmark of apoptosis, was observed. Furthermore, using nerve growth factor (NGF)-differentiated PC12 cells as a neuronal cell model, we showed that Mn exposure decreased cell viability and induced apparent apoptosis. Importantly, p53 was progressively upregulated, and accumulated in both the nucleus and the cytoplasm. The cytoplasmic p53 had a remarkable distribution in mitochondria, suggesting an involvement of p53 mitochondrial translocation in Mn-induced neuronal apoptosis. In addition, Mn-induced impairment of mitochondrial membrane potential (ΔΨm) could be partially rescued by pretreatment with inhibitors of p53 transcriptional activity and p53 mitochondrial translocation, Pifithrin-α (PFT-α) and Pifithrin-μ (PFT-μ), respectively. Moreover, blockage of p53 activities with PFT-α and PFT-μ significantly attenuated Mn-induced reactive oxidative stress (ROS) generation and mitochondrial H₂O₂ production. Finally, we observed that pretreatment with PFT-α and PFT-μ ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings implicate that p53 transcription-dependent and -independent pathways may play crucial roles in the regulation of Mn-induced neuronal death.


Neurotoxicology | 2014

The PERK-eIF2α signaling pathway is involved in TCDD-induced ER stress in PC12 cells

Zhiqing Duan; Jianya Zhao; Xikang Fan; Cuiying Tang; Lingwei Liang; Xiaoke Nie; Jiao Liu; Qiyun Wu; Guangfei Xu

Studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces apoptotic cell death in neuronal cells. However, whether this is the result of endoplasmic reticulum (ER) stress-mediated apoptosis remains unknown. In this study, we determined whether ER stress plays a role in the TCDD-induced apoptosis of pheochromocytoma (PC12) cells and primary neurons. PC12 cells were exposed to different TCDD concentrations (1, 10, 100, 200, or 500nM) for varying lengths of time (1, 3, 6, 12, or 24h). TCDD concentrations much higher than 10nM (100, 200, or 500nM) markedly increased glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) levels, which are hallmarks of ER stress. We also evaluated the effects of TCDD on ER morphology in PC12 cells and primary neurons that were treated with different TCDD concentrations (1, 10, 50, or 200nM) for 24h. Ultrastructural ER alterations were observed with transmission electron microscopy in PC12 cells and primary neurons treated with high concentrations of TCDD. Furthermore, TCDD-induced ER stress significantly promoted the activation of the PKR-like ER kinase (PERK), a sensor for the unfolded protein response (UPR), and its downstream target eukaryotic translation initiation factor 2 α (eIF2α); in contrast, TCDD did not appear to affect inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), two other UPR sensors. Importantly, TCDD significantly inhibited eIF2α phosphorylation and triggered apoptosis in PC12 cells after 6-24h of treatment. Salubrinal, which activates the PERK-eIF2α pathway, significantly enhanced eIF2α phosphorylation in PC12 cells and attenuated the TCDD-induced cell death. In contrast, knocking down eIF2α using small interfering RNA markedly enhanced TCDD-induced cell death. Together, these results indicate that the PERK-eIF2α pathway plays an important role in TCDD-induced ER stress and apoptosis in PC12 cells.


Toxicology Letters | 2015

Involvement of dysregulated Wip1 in manganese-induced p53 signaling and neuronal apoptosis.

Xia Ma; Jingling Han; Qiyun Wu; Hanzhang Liu; Shangshi Shi; Cheng Wang; Yueran Wang; Jing Xiao; Jianya Zhao; Junkang Jiang; Chunhua Wan

Overexposure to manganese (Mn) has been known to induce neuronal death and neurodegenerative symptoms. However, the precise mechanisms underlying Mn neurotoxicity remain incompletely understood. In the present study, we established a Mn-exposed rat model and found that downregulation of wild type p53-induced phosphatase 1 (Wip1) might contribute to p53 activation and resultant neuronal apoptosis following Mn exposure. Western blot and immunohistochemical analyses revealed that the expression of Wip1 was markedly decreased following Mn exposure. In addition, immunofluorescence assay demonstrated that Mn exposure led to significant reduction in the number of Wip1-positive neurons. Accordingly, the expression of Mdm2 was progressively decreased, which was accompanied with markedly increased expression of p53, as well as the ratio of Bax/Bcl-xl. Furthermore, we showed that Mn exposure decreased the viability and induced apparent apoptosis in NFG-differentiated neuron-like PC12 cells. Importantly, the expression of Wip1 decreased progressively, whereas the level of cellular p53 and the ratio of Bax/Bcl-xl were elevated, which resembled the expression of the proteins in animal model studies. Depletion of p53 significantly ameliorated Mn-mediated cytotoxic effect in PC12 cells. In addition, ectopic expression of Wip1 attenuated Mn-induced p53 signaling as well as apoptosis in PC12 cells. Finally, we observed that depletion of Wip1 augmented Mn-induced apoptosis in PC12 cells. Collectively, these findings suggest that downregulated Wip1 expression plays an important role in Mn-induced neuronal death in the brain striatum via the modulation of p53 signaling.


Neuropathology and Applied Neurobiology | 2008

Spatiotemporal patterns of postsynaptic density (PSD)-95 expression after rat spinal cord injury

Chun Cheng; Shangfeng Gao; Jianya Zhao; Shuqiong Niu; Minhao Chen; Xin Li; Jing Qin; Shuxian Shi; Zhiqin Guo; Aiguo Shen

Aims: Postsynaptic density (PSD)‐95 is a scaffolding protein linking the N‐methyl‐D‐aspartate receptor with neuronal nitric oxide synthase (nNOS), which contributes to many physiological and pathological actions. We here investigated whether PSD‐95 was involved in the secondary response following spinal cord injury (SCI). Methods: Spinal cord contusion (SCC) and spinal cord transection (SCT) models at thoracic (T) segment 9 (T9) were established in adults rats. Real‐time polymerase chain reaction, Western blot, immunohistochemistry and immunofluorescence were used to detect the temporal profile and spatial distribution of PSD‐95 after SCI. The association between PSD‐95 and nNOS in the injured cords was also assessed by coimmmunoprecipation and double immunofluorescent staining. Results: The mRNA and protein for PSD‐95 expression were significantly increased at 2 h or 8 h, and then gradually declined to the baseline level, ultimately up‐regulated again from 5 days to 7 days for its mRNA level and at 7 days or 14 days for its protein level after either SCC or SCT. PSD‐95 immunoreactivity was found in neurones, oligodendrocytes and synaptic puncta of spinal cord tissues within 5 mm from the lesion site. Importantly, injury‐induced expression of PSD‐95 was colabelled by active caspase‐3 (apoptotic marker), Tau‐1 (the marker for pathological oligodendrocytes) and nNOS. Conclusions: Accompanied by the spatio‐temporal changes for PSD‐95 expression, the association between PSD‐95 and nNOS undergoes substantial alteration after SCI. These two molecules are likely to form a complex on apoptotic neurones and pathological oligodendrocytes, which may in turn be involved in the secondary response after SCI.


Journal of Applied Toxicology | 2015

2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induces premature senescence of astrocytes via WNT/β-catenin signaling and ROS production

Xiaoke Nie; Lingwei Liang; Hanqing Xi; Shengyang Jiang; Junkang Jiang; Cuiying Tang; Xipeng Liu; Suyi Liu; Chunhua Wan; Jianya Zhao; Jianbin Yang

2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD‐mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms. Using the senescence‐associated β‐galactosidase (SA‐β‐Gal) assay, we demonstrated that TCDD exposure triggered significant premature senescence of astrocyte cells, which was accompanied by a marked activation of the Wingless and int (WNT)/β‐catenin signaling pathway. In addition, TCDD altered the expression of senescence marker proteins, such as p16, p21 and GFAP, which together have been reported to be upregulated in aging astrocytes, in both dose‐ and time‐dependent manners. Further, TCDD led to cell‐cycle arrest, F‐actin reorganization and the accumulation of cellular reactive oxygen species (ROS). Moreover, the ROS scavenger N‐acetylcysteine (NAC) markedly attenuated TCDD‐induced ROS production, cellular oxidative damage and astrocyte senescence. Notably, the application of XAV939, an inhibitor of WNT/β‐catenin signaling pathway, ameliorated the effect of TCDD on cellular β‐catenin level, ROS production, cellular oxidative damage and premature senescence in astrocytes. In summary, our findings indicated that TCDD might induce astrocyte senescence via WNT/β‐catenin and ROS‐dependent mechanisms. Copyright


Neuroscience | 2014

Upregulation of mitochondrial protease HtrA2/Omi contributes to manganese-induced neuronal apoptosis in rat brain striatum.

Junkang Jiang; Xia Ma; Qiyun Wu; W.B. Qian; N. Wang; Shangshi Shi; Jingling Han; Jianya Zhao; Shengyang Jiang; Chunhua Wan

Manganese (Mn) is an essential trace element that is required for normal brain functioning. However, excessive intake of Mn has been known to lead to neuronal loss and clinical symptoms resembling idiopathic Parkinsons disease (IPD), whose precise molecular mechanism remains largely elusive. In the study, we established a Mn-exposed rat model and identified a mitochondrial protease, the mature form of high temperature requirement A2 (HtrA2/Omi), which was significantly upregulated in rat brain striatum after Mn exposure. Western blot and immunohistochemical analyses revealed that the expression of mature HtrA2 was remarkably increased following Mn exposure. In addition, immunofluorescence assay demonstrated that overexposure to Mn could lead to significant elevation in the number of HtrA2-positive neurons. Accordingly, the expression of X-linked inhibitor of apoptosis protein (XIAP), a well-characterized target of HtrA2-mediated proteolysis, was progressively decreased following Mn exposure, and was correlated with increased level of active caspase-3. Further, we showed that Mn exposure decreased the viability and induced apparent apoptosis of NFG-differentiated PC12 cells. Importantly, the expression of HtrA2 was progressively increased, whereas the level of cellular XIAP was reduced during Mn-induced apoptosis. In addition, blockage of HtrA2 activity with UCF-101 restored Mn-induced reduction in XIAP expression. Finally, we observed that UCF-101 treatment ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings suggested that upregulated HtrA2 played a role in Mn-induced neuronal death in brain striatum.


Journal of Molecular Neuroscience | 2015

KHSRP Participates in Manganese-Induced Neurotoxicity in Rat Striatum and PC12 Cells

Shangshi Shi; Jianya Zhao; Lingling Yang; Xiaoke Nie; Jingling Han; Xia Ma; Chunhua Wan; Junkang Jiang

Manganese (Mn) is an essential micronutrient. However, exposure to high doses of Mn may lead to a neurological disease known as manganism, which is characterized by marked brain neuronal loss. K-homology splicing regulator protein (KHSRP) is a multifunctional RNA-binding protein and has been implicated in the regulation of multiple cellular signaling associated with neuronal apoptosis and survival, such as p38 mitogen-activated protein kinase (MAPK), nuclear factor kappaB (NF-κB), and Wnt/β-catenin pathways. In the present study, the role of KHSRP in Mn-induced neurotoxicity was investigated in vivo using a rat model of chronic Mn exposure and in vitro using differentiated PC12 cell cultures. Western blot and immunohistochemical analyses showed a significant upregulation of KHSRP in rat striatum following Mn exposure. Immunofluorescent labeling indicated that KHSRP was localized mainly in neurons. Terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick end labeling (TUNEL) assay showed that KHSRP was mainly distributed in apoptotic neurons. Increased KHSRP expression was positively correlated with the upregulation of several apoptosis-related proteins, such as p53, bax, and active caspase-3. In addition, significant co-localization of KHSRP and active caspase-3 in neurons after Mn exposure was also observed, suggesting a potential involvement of KHSRP in the regulation of Mn-induced striatal neuronal apoptosis. Importantly, interference with KHSRP apparently decreased the level of p53 and attenuated Mn-induced neuronal apoptosis. Taken together, these results indicate that upregulation of KHSRP may be involved in the pathological process underlying Mn neurotoxicity via the modulation of p53 signaling.


International Immunopharmacology | 2015

Perfluorooctane sulfonate mediates microglial activation and secretion of TNF-α through Ca2 +-dependent PKC-NF-кB signaling

Jianbin Yang; Cheng Wang; Xiaoke Nie; Shangshi Shi; Jing Xiao; Xia Ma; Xuan Dong; Yan Zhang; Jingling Han; Ting Li; Jiamin Mao; Xinhang Liu; Jianya Zhao; Qiyun Wu

Perfluorooctane sulfonate (PFOS), a ubiquitous pollutant widely found in the environment and biota, can cause numerous adverse effects on human health. In recent years, PFOSs toxic effects on the central nervous system (CNS) have been shown. However, we still have a lot to study in the underlying molecular mechanism of PFOSs neurotoxicity. Microglia, the innate immune cells of CNS, are critically implicated in various neurological diseases caused by pro-inflammatory mediators. In our research, we found that HAPI microglia secreted tumor necrosis factor-alpha (TNF-α) after PFOS exposure in time-dependent and dose-dependent way. We also discovered that intracellular concentration of free Ca(2+) ([Ca(2+)]i) significantly increased after PFOS treatments. It was noteworthy here the secretion of TNF-α mediated by PFOS was blocked by Ca(2+) inhibitor and protein kinase C (PKC) inhibitor. Besides these, we had learned as well that PFOS brought about the up-regulation of phosphorylated nuclear factor kappa B (NF-кB) p65 expression and accelerated degradation of NF-κB inhibitor alpha (IкBα), however, these effects could be attenuated or blocked by Ca(2+) inhibitor and PKC inhibitor. Finally, through treating SH-SY5Y cells with PFOS-treated microglial conditioned medium, we demonstrated that TNF-α mediated neuronal apoptosis. To sum up, our research had shown, for the first time, that the distinct TNF-α secretion brought by PFOS in HAPI microglia, was achieved through the Ca(2+)-dependent PKC-NF-кB signaling, subsequently participating in neuronal loss.

Collaboration


Dive into the Jianya Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge