Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianyao Wu is active.

Publication


Featured researches published by Jianyao Wu.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The bone-sparing effects of estrogen and WNT16 are independent of each other

Sofia Movérare-Skrtic; Jianyao Wu; Petra Henning; Karin Gustafsson; Klara Sjögren; Sara H. Windahl; Antti Koskela; Juha Tuukkanen; Anna E. Börjesson; Marie K Lagerquist; Ulf H. Lerner; Fu Ping Zhang; Jan Åke Gustafsson; Matti Poutanen; Claes Ohlsson

Significance Previous studies demonstrate that endogenous wingless-type MMTV integration site family (WNT)16 is a crucial regulator of cortical bone mass. Surprisingly, we demonstrate that overexpression of WNT16 increases mainly trabecular bone mass. Both estrogen and WNT16 are crucial regulators of bone mass, but the possible interaction between WNT16-signaling and estrogen-signaling is unknown. To determine the possible interaction between WNT16 and estrogen signaling in bone, we developed and used two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We demonstrated that the bone-sparing effects of estrogen and WNT16 are independent of each other. As WNT16 signaling in bone does not require normal estrogen action, we propose that WNT16-targeted therapies might be useful for treatment of postmenopausal trabecular bone loss. Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16−/− mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females is WNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We developed a mouse model with osteoblast-specific Wnt16 overexpression (Obl-Wnt16). These mice had several-fold elevated Wnt16 expression in both trabecular and cortical bone compared with wild type (WT) mice. Obl-Wnt16 mice displayed increased total body bone mineral density (BMD), surprisingly caused mainly by a substantial increase in trabecular bone mass, resulting in improved bone strength of vertebrae L3. Ovariectomy (ovx) reduced the total body BMD and the trabecular bone mass to the same degree in Obl-Wnt16 mice and WT mice, suggesting that the bone-sparing effect of estrogen is WNT16-independent. However, these bone parameters were similar in ovx Obl-Wnt16 mice and sham operated WT mice. The role of WNT16 for the bone-sparing effect of estrogen was also evaluated in Wnt16−/− mice. Treatment with estradiol increased the trabecular and cortical bone mass to a similar extent in both Wnt16−/− and WT mice. In conclusion, the bone-sparing effects of estrogen and WNT16 are independent of each other. Furthermore, loss of endogenous WNT16 results specifically in cortical bone loss, whereas overexpression of WNT16 surprisingly increases mainly trabecular bone mass. WNT16-targeted therapies might be useful for treatment of postmenopausal trabecular bone loss.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Body weight homeostat that regulates fat mass independently of leptin in rats and mice

John-Olov Jansson; Vilborg Palsdottir; Daniel Hägg; Erik Schéle; Suzanne L. Dickson; Fredrik Anesten; Tina Bake; Mikael Montelius; Jakob Bellman; Maria Johansson; Roger D. Cone; Daniel J. Drucker; Jianyao Wu; Biljana Aleksic; Anna Törnqvist; Klara Sjögren; Jan Åke Gustafsson; Sara H. Windahl; Claes Ohlsson

Significance The only known homeostatic regulator of fat mass is the leptin system. We hypothesized that there is a second homeostat regulating body weight with an impact on fat mass. In this study we have added and removed weight loads from experimental animals and measured the effects on the biological body weight. The results demonstrate that there is a body weight homeostat that regulates fat mass independently of leptin. As the body weight-reducing effect of increased loading was dependent on osteocytes, we propose that there is a sensor for body weight in the long bones of the lower extremities acting as “body scales.” This is part of a body weight homeostat, “gravitostat,” that keeps body weight and body fat mass constant. Subjects spending much time sitting have increased risk of obesity but the mechanism for the antiobesity effect of standing is unknown. We hypothesized that there is a homeostatic regulation of body weight. We demonstrate that increased loading of rodents, achieved using capsules with different weights implanted in the abdomen or s.c. on the back, reversibly decreases the biological body weight via reduced food intake. Importantly, loading relieves diet-induced obesity and improves glucose tolerance. The identified homeostat for body weight regulates body fat mass independently of fat-derived leptin, revealing two independent negative feedback systems for fat mass regulation. It is known that osteocytes can sense changes in bone strain. In this study, the body weight-reducing effect of increased loading was lost in mice depleted of osteocytes. We propose that increased body weight activates a sensor dependent on osteocytes of the weight-bearing bones. This induces an afferent signal, which reduces body weight. These findings demonstrate a leptin-independent body weight homeostat (“gravitostat”) that regulates fat mass.


Scientific Reports | 2016

The role of membrane ERα signaling in bone and other major estrogen responsive tissues

Karin Gustafsson; Helen H. Farman; Petra Henning; Vikte Lionikaite; Sofia Movérare-Skrtic; Jianyao Wu; Henrik Ryberg; Antti Koskela; J.-Å. Gustafsson; Juha Tuukkanen; E. R. Levin; Claes Ohlsson; Marie K Lagerquist

Estrogen receptor α (ERα) signaling leads to cellular responses in several tissues and in addition to nuclear ERα-mediated effects, membrane ERα (mERα) signaling may be of importance. To elucidate the significance, in vivo, of mERα signaling in multiple estrogen-responsive tissues, we have used female mice lacking the ability to localize ERα to the membrane due to a point mutation in the palmitoylation site (C451A), so called Nuclear-Only-ER (NOER) mice. Interestingly, the role of mERα signaling for the estrogen response was highly tissue-dependent, with trabecular bone in the axial skeleton being strongly dependent (>80% reduction in estrogen response in NOER mice), cortical and trabecular bone in long bones, as well as uterus and thymus being partly dependent (40–70% reduction in estrogen response in NOER mice) and effects on liver weight and total body fat mass being essentially independent of mERα (<35% reduction in estrogen response in NOER mice). In conclusion, mERα signaling is important for the estrogenic response in female mice in a tissue-dependent manner. Increased knowledge regarding membrane initiated ERα actions may provide means to develop new selective estrogen receptor modulators with improved profiles.


Endocrinology | 2015

Androgens Regulate Bone Marrow B Lymphopoiesis in Male Mice by Targeting Osteoblast-Lineage Cells

Anna S. Wilhelmson; Alexandra Stubelius; Anna E. Börjesson; Jianyao Wu; Anna Stern; Stephen Malin; Inga-Lill Mårtensson; Claes Ohlsson; Hans Carlsten; Åsa Tivesten

Testosterone has profound immune-modulatory actions, which may be important for the sexual dimorphism in immune-related disorders, such as autoimmune diseases. A well-known effect of androgens is inhibition of bone marrow B lymphopoiesis; however, a plausible target cell for this effect has not yet been presented. The aim of this study was to determine the target cell for androgen-mediated regulation of bone marrow B lymphopoiesis in males. We confirm higher number of bone marrow B cells in male mice with global inactivation of the androgen receptor (AR) and these global AR knockout (G-ARKO) mice had increased number of B cell precursors from the pro-B stage. Because osteoblast-lineage cells are known to support B lymphopoiesis at the pro-B stage, we investigated the effect on B lymphopoiesis in osteoblast-lineage cell-specific ARKO (O-ARKO) mice; O-ARKO mice had increased number of B cells in the bone marrow, and the number of B cell precursors was increased from the pro-B stage, demonstrating that O-ARKO mimics the bone marrow B lymphopoiesis pattern of G-ARKO mice. By contrast, O-ARKO mice displayed only minor changes in B cell numbers in the splenic compartment compared with G-ARKO. Further, O-ARKO mice had moderately reduced number of bone trabeculae in the vertebrae, whereas cortical bone was unaffected. In conclusion, androgens exert inhibitory effects on bone marrow B lymphopoiesis in males by targeting the AR in osteoblast-lineage cells. The identification of the likely target cell for androgen-mediated regulation of bone marrow B lymphopoiesis will contribute to elucidation of the mechanisms by which androgens modulate immune-related disorders.


Endocrinology | 2016

Enzalutamide Reduces the Bone Mass in the Axial But Not the Appendicular Skeleton in Male Mice

Jianyao Wu; Sofia Movérare-Skrtic; Anna E. Börjesson; Marie K Lagerquist; Klara Sjögren; Sara H. Windahl; Antti Koskela; Louise Grahnemo; Ulrika Islander; Anna S. Wilhelmson; Åsa Tivesten; Juha Tuukkanen; Claes Ohlsson

Testosterone is a crucial regulator of the skeleton, but the role of the androgen receptor (AR) for the maintenance of the adult male skeleton is unclear. In the present study, the role of the AR for bone metabolism and skeletal growth after sexual maturation was evaluated by means of the drug enzalutamide, which is a new AR antagonist used in the treatment of prostate cancer patients. Nine-week-old male mice were treated with 10, 30, or 100 mg/kg·d of enzalutamide for 21 days or were surgically castrated and were compared with vehicle-treated gonadal intact mice. Although orchidectomy reduced the cortical bone thickness and trabecular bone volume fraction in the appendicular skeleton, these parameters were unaffected by enzalutamide. In contrast, both enzalutamide and orchidectomy reduced the bone mass in the axial skeleton as demonstrated by a reduced lumbar spine areal bone mineral density (P < .001) and trabecular bone volume fraction in L5 vertebrae (P < .001) compared with vehicle-treated gonadal intact mice. A compression test of the L5 vertebrae revealed that the mechanical strength in the axial skeleton was significantly reduced by enzalutamide (maximal load at failure -15.3% ± 3.5%; P < .01). The effects of enzalutamide in the axial skeleton were associated with a high bone turnover. In conclusion, enzalutamide reduces the bone mass in the axial but not the appendicular skeleton in male mice after sexual maturation. We propose that the effect of testosterone on the axial skeleton in male mice is mainly mediated via the AR.


Journal of Molecular Endocrinology | 2017

Extra-nuclear effects of estrogen on cortical bone in males require ERαAF-1

Helen H. Farman; Jianyao Wu; Karin Gustafsson; Sara H. Windahl; Sung Hoon Kim; John A. Katzenellenbogen; Claes Ohlsson; Marie K Lagerquist

Estradiol (E2) signaling via estrogen receptor alpha (ERα) is important for the male skeleton as demonstrated by ERα inactivation in both mice and man. ERα mediates estrogenic effects not only by translocating to the nucleus and affecting gene transcription but also by extra-nuclear actions e.g., triggering cytoplasmic signaling cascades. ERα contains various domains, and the role of activation function 1 (ERαAF-1) is known to be tissue specific. The aim of this study was to determine the importance of extra-nuclear estrogen effects for the skeleton in males and to determine the role of ERαAF-1 for mediating these effects. Five-month-old male wild-type (WT) and ERαAF-1-inactivated (ERαAF-10) mice were orchidectomized and treated with equimolar doses of 17β-estradiol (E2) or an estrogen dendrimer conjugate (EDC), which is incapable of entering the nucleus and thereby only initiates extra-nuclear ER actions or their corresponding vehicles for 3.5 weeks. As expected, E2 treatment increased cortical thickness and trabecular bone volume per total volume (BV/TV) in WT males. EDC treatment increased cortical thickness in WT males, whereas no effect was detected in trabecular bone. In ERαAF-10 males, E2 treatment increased cortical thickness, but did not affect trabecular bone. Interestingly, the effect of EDC on cortical bone was abolished in ERαAF-10 mice. In conclusion, extra-nuclear estrogen signaling affects cortical bone mass in males, and this effect is dependent on a functional ERαAF-1. Increased knowledge regarding estrogen signaling mechanisms in the regulation of the male skeleton may aid the development of new treatment options for male osteoporosis.


Molecular and Cellular Endocrinology | 2018

Androgen receptor SUMOylation regulates bone mass in male mice

Jianyao Wu; Sofia Movérare-Skrtic; Fu-Ping Zhang; Antti Koskela; Juha Tuukkanen; Jorma J. Palvimo; Petra Sipilä; Matti Poutanen; Claes Ohlsson

The crucial effects of androgens on the male skeleton are at least partly mediated via the androgen receptor (AR). In addition to hormone binding, the AR activity is regulated by post-translational modifications, including SUMOylation. SUMOylation is a reversible modification in which Small Ubiquitin-related MOdifier proteins (SUMOs) are attached to the AR and thereby regulate the activity of the AR and change its interactions with other proteins. To elucidate the importance of SUMOylation of AR for male bone metabolism, we used a mouse model devoid of the two AR SUMOylation sites (ARSUM-; K381R and K500R are substituted). Six-month-old male ARSUM- mice displayed significantly reduced trabecular bone volume fraction in the distal metaphyseal region of femur compared with wild type (WT) mice (BV/TV, -19.1 ± 4.9%, P < 0.05). The number of osteoblasts per bone perimeter was substantially reduced (-60.5 ± 7.2%, P < 0.001) while no significant effect was observed on the number of osteoclasts in the trabecular bone of male ARSUM- mice. Dynamic histomorphometric analysis of trabecular bone revealed a reduced bone formation rate (-32.6 ± 7.4%, P < 0.05) as a result of reduced mineralizing surface per bone surface in ARSUM- mice compared with WT mice (-24.3 ± 3.6%, P < 0.001). Furthermore, cortical bone thickness in the diaphyseal region of femur was reduced in male ARSUM- mice compared with WT mice (-7.3 ± 2.0%, P < 0.05). In conclusion, mice devoid of AR SUMOylation have reduced trabecular bone mass as a result of reduced bone formation. We propose that therapies enhancing AR SUMOylation might result in bone-specific anabolic effects with minimal adverse effects in other tissues.


Molecular and Cellular Endocrinology | 2018

The androgen receptor is required for maintenance of bone mass in adult male mice

Jianyao Wu; Petra Henning; Klara Sjögren; Antti Koskela; Juha Tuukkanen; Sofia Movérare-Skrtic; Claes Ohlsson

Previous studies evaluating the role of the androgen receptor (AR) for bone mass have used mouse models with global or tissue-specific lifelong inactivation of the AR. However, these mouse models have the AR inactivated already early in life and the relative roles of the AR during development, sexual maturation and in adult mice cannot be evaluated separately. The aim of the present study was to determine the specific roles of the AR in bone during sexual maturation and in adult mice. The AR was conditionally ablated at four (pre-pubertal) or ten (post-pubertal) weeks of age in male mice using tamoxifen-inducible Cre-mediated recombination. Both the pre-pubertal and the post-pubertal AR inactivation were efficient demonstrated by substantially lower AR mRNA levels in seminal vesicle, bone and white adipose tissue as well as markedly reduced weights of reproductive tissues when comparing inducible ARKO mice and control mice at 14 weeks of age. Total body BMD, as analyzed by DXA, as well as tibia diaphyseal cortical bone thickness and proximal metaphyseal trabecular bone volume fraction, as analyzed by μCT, were significantly reduced by both pre-pubertal and post-pubertal AR inactivation. These bone effects were associated with an increased bone turnover, indicating a high bone turnover osteoporosis. Pre-pubertal but not post-pubertal AR inactivation resulted in substantially increased fat mass. In conclusion, the AR is required for maintenance of both trabecular and cortical bone in adult male mice while AR expression during puberty is crucial for normal fat mass homeostasis in adult male mice.


American Journal of Physiology-endocrinology and Metabolism | 2018

WNT16 overexpression partly protects against glucocorticoid-induced bone loss

Claes Ohlsson; Karin H Nilsson; Petra Henning; Jianyao Wu; Karin Gustafsson; Matti Poutanen; Ulf H. Lerner; Sofia Movérare-Skrtic

Therapeutic use of glucocorticoids (GCs) is a major cause of secondary osteoporosis, but the molecular mechanisms responsible for the deleterious effects of GCs in bone are only partially understood. WNT16 is a crucial physiological regulator of bone mass and fracture susceptibility, and we hypothesize that disturbed WNT16 activity might be involved in the deleterious effects of GC in bone. Twelve-week-old female Obl-Wnt16 mice (WNT16 expression driven by the rat procollagen type I α1 promoter) and wild-type (WT) littermates were treated with prednisolone (7.6 mg·kg-1·day-1) or vehicle for 4 wk. We first observed that GC treatment decreased the Wnt16 mRNA levels in bone of female mice (-56.4 ± 6.1% compared with vehicle, P < 0.001). We next evaluated if WNT16 overexpression protects against GC-induced bone loss. Dual-energy X-ray absorptiometry analyses revealed that GC treatment decreased total body bone mineral density in WT mice (-3.9 ± 1.2%, P = 0.028) but not in Obl-Wnt16 mice (+1.3 ± 1.4%, nonsignificant). Microcomputed tomography analyses showed that GC treatment decreased trabecular bone volume fraction (BV/TV) of the femur in WT mice ( P = 0.019) but not in Obl-Wnt16 mice. Serum levels of the bone formation marker procollagen type I N-terminal propeptide were substantially reduced by GC treatment in WT mice (-50.3 ± 7.0%, P = 0.008) but not in Obl-Wnt16 mice (-3.8 ± 21.2%, nonsignificant). However, the cortical bone thickness in femur was reduced by GC treatment in both WT mice and Obl-Wnt16 mice. In conclusion, GC treatment decreases Wnt16 mRNA levels in bone and WNT16 overexpression partly protects against GC-induced bone loss.


Journal of Endocrinology | 2018

Membrane estrogen receptor-α is essential for estrogen signaling in the male skeleton

Helen H. Farman; Karin Gustafsson; Petra Henning; Louise Grahnemo; Vikte Lionikaite; Sofia Movérare-Skrtic; Jianyao Wu; Henrik Ryberg; Antti Koskela; Juha Tuukkanen; Ellis Levin; Claes Ohlsson; Marie K Lagerquist

Collaboration


Dive into the Jianyao Wu's collaboration.

Top Co-Authors

Avatar

Claes Ohlsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Henning

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klara Sjögren

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge