Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianyu Wang is active.

Publication


Featured researches published by Jianyu Wang.


Nature | 2012

Quantum teleportation and entanglement distribution over 100-kilometre free-space channels

Juan Yin; Ji-Gang Ren; He Lu; Yuan Cao; Hai-Lin Yong; Yu-Ping Wu; C. Liu; Sheng-Kai Liao; Fei Zhou; Yan Jiang; Xin-Dong Cai; Ping Xu; Ge-Sheng Pan; Jianjun Jia; Yong-Mei Huang; Hao Yin; Jianyu Wang; Yu-Ao Chen; Cheng-Zhi Peng; Jian-Wei Pan

Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser–Horne–Shimony–Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high-frequency and high-accuracy acquiring, pointing and tracking technique developed in our experiment can be directly used for future satellite-based quantum communication and large-scale tests of quantum foundations.


Science | 2017

Satellite-based entanglement distribution over 1200 kilometers

Juan Yin; Yuan Cao; Yu-Huai Li; Sheng-Kai Liao; Liang Zhang; Ji-Gang Ren; Wen-Qi Cai; Weiyue Liu; Bo Li; Hui Dai; Guang-Bing Li; Qi-Ming Lu; Yun-Hong Gong; Yu Xu; Shuang-Lin Li; Feng-Zhi Li; Ya-Yun Yin; Ziqing Jiang; Ming Li; Jianjun Jia; Ge Ren; Dong He; Yi-Lin Zhou; Xiao-Xiang Zhang; Na Wang; Xiang Chang; Zhen-Cai Zhu; Nai-Le Liu; Yu-Ao Chen; Chao-Yang Lu

Entangled photons are distributed over vast distances using a satellite-to-ground link. Space calling Earth, on the quantum line A successful quantum communication network will rely on the ability to distribute entangled photons over large distances between receiver stations. So far, free-space demonstrations have been limited to line-of-sight links across cities or between mountaintops. Scattering and coherence decay have limited the link separations to around 100 km. Yin et al. used the Micius satellite, which was launched last year and is equipped with a specialized quantum optical payload. They successfully demonstrated the satellite-based entanglement distribution to receiver stations separated by more than 1200 km. The results illustrate the possibility of a future global quantum communication network. Science, this issue p. 1140 Long-distance entanglement distribution is essential for both foundational tests of quantum physics and scalable quantum networks. Owing to channel loss, however, the previously achieved distance was limited to ~100 kilometers. Here we demonstrate satellite-based distribution of entangled photon pairs to two locations separated by 1203 kilometers on Earth, through two satellite-to-ground downlinks with a summed length varying from 1600 to 2400 kilometers. We observed a survival of two-photon entanglement and a violation of Bell inequality by 2.37 ± 0.09 under strict Einstein locality conditions. The obtained effective link efficiency is orders of magnitude higher than that of the direct bidirectional transmission of the two photons through telecommunication fibers.


Nature Photonics | 2013

Direct and full-scale experimental verifications towards ground-satellite quantum key distribution

Jianyu Wang; Bin Yang; Sheng-Kai Liao; Liang Zhang; Qi Shen; Xiaofang Hu; Jincai Wu; Shiji Yang; Hao Jiang; Yan-Lin Tang; Bo Zhong; Hao Liang; Weiyue Liu; Yihua Hu; Yong-Mei Huang; Bo Qi; Ji-Gang Ren; Ge-Sheng Pan; Juan Yin; Jianjun Jia; Yu-Ao Chen; Kai Chen; Cheng-Zhi Peng; Jian-Wei Pan

Full-scale verifications for establishing quantum cryptography communication via satellites are reported. Three independent experiments using a hot-air balloon are performed: on a rapidly moving platform over a distance of 40 km, on a floating platform over a distance of 20 km, and over 96 km in air with a huge loss.


Nature | 2017

Satellite-to-ground quantum key distribution

Sheng-Kai Liao; Wen-Qi Cai; Weiyue Liu; Liang Zhang; Yang Li; Ji-Gang Ren; Juan Yin; Qi Shen; Yuan Cao; Zheng-Ping Li; Feng-Zhi Li; Xia-Wei Chen; Li-Hua Sun; Jianjun Jia; Jincai Wu; Xiao-Jun Jiang; Jianfeng Wang; Yong-Mei Huang; Qiang Wang; Yi-Lin Zhou; Lei Deng; Tao Xi; Lu Ma; Tai Hu; Qiang Zhang; Yu-Ao Chen; Nai-Le Liu; Xiang-Bin Wang; Zhen-Cai Zhu; Chao-Yang Lu

Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD—a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.


Nature | 2017

Ground-to-satellite quantum teleportation

Ji-Gang Ren; Ping Xu; Hai-Lin Yong; Liang Zhang; Sheng-Kai Liao; Juan Yin; Weiyue Liu; Wen-Qi Cai; Meng Yang; Li Li; Kui-Xing Yang; Xuan Han; Yong-Qiang Yao; Ji Li; Hai-Yan Wu; Song Wan; Lei Liu; Ding-Quan Liu; Yaowu Kuang; Zhiping He; Peng Shang; Cheng Guo; Ru-Hua Zheng; Kai Tian; Zhen-Cai Zhu; Nai-Le Liu; Chao-Yang Lu; Rong Shu; Yu-Ao Chen; Cheng-Zhi Peng

An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’ the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu.

Jin-Hai Zhang; Wei Yang; Sen Hu; Yangting Lin; Guangyou Fang; Chunlai Li; Wenxi Peng; Sanyuan Zhu; Zhiping He; Bin Zhou; Hongyu Lin; Jianfeng Yang; Enhai Liu; Y. Xu; Jianyu Wang; Zhenxing Yao; Yongliao Zou; Jun Yan; Ziyuan Ouyang

Significance After the Apollo and Luna missions, which were flown about 40 years ago, the Moon was explored only from orbit. In addition, no samples were returned from the young and high-FeO and TiO2 mare basalt in the northern Imbrium basin. Such samples are important to understand the formation and evolution of the Procellarum KREEP [potassium (K), rare earth elements (REE), and phosphorus (P)] terrain, a key terrain highly enriched in radioactive nuclides. The Chang’e-3 mission carried out the first in situ analyses of chemical and mineral compositions of the lunar soil and ground-based measurements of the lunar regolith and the underlying basalt units at this specific site. The lunar regolith layer recorded the surface processes of the Moon, whereas the basalt units recorded the volcanic eruption history. We report the surface exploration by the lunar rover Yutu that landed on the young lava flow in the northeastern part of the Mare Imbrium, which is the largest basin on the nearside of the Moon and is filled with several basalt units estimated to date from 3.5 to 2.0 Ga. The onboard lunar penetrating radar conducted a 114-m-long profile, which measured a thickness of ∼5 m of the lunar regolith layer and detected three underlying basalt units at depths of 195, 215, and 345 m. The radar measurements suggest underestimation of the global lunar regolith thickness by other methods and reveal a vast volume of the last volcano eruption. The in situ spectral reflectance and elemental analysis of the lunar soil at the landing site suggest that the young basalt could be derived from an ilmenite-rich mantle reservoir and then assimilated by 10–20% of the last residual melt of the lunar magma ocean.


Nature Communications | 2015

Correlated compositional and mineralogical investigations at the Chang'e-3 landing site

Zongcheng Ling; Bradley L. Jolliff; Alian Wang; Chunlai Li; Jianzhong Liu; Jiang Zhang; Bo Li; Lingzhi Sun; Jian Chen; Long Xiao; Jianjun Liu; Xin Ren; Wenxi Peng; H. Wang; Xingzhu Cui; Zhiping He; Jianyu Wang

The chemical compositions of relatively young mare lava flows have implications for the late volcanism on the Moon. Here we report the composition of soil along the rim of a 450-m diameter fresh crater at the Chang′e-3 (CE-3) landing site, investigated by the Yutu rover with in situ APXS (Active Particle-induced X-ray Spectrometer) and VNIS (Visible and Near-infrared Imaging Spectrometer) measurements. Results indicate that this regions composition differs from other mare sample-return sites and is a new type of mare basalt not previously sampled, but consistent with remote sensing. The CE-3 regolith derived from olivine-normative basaltic rocks with high FeO/(FeO+MgO). Deconvolution of the VNIS data indicates abundant high-Ca ferropyroxene (augite and pigeonite) plus Fe-rich olivine. We infer from the regolith composition that the basaltic source rocks formed during late-stage magma-ocean differentiation when dense ferropyroxene-ilmenite cumulates sank and mixed with deeper, relatively ferroan olivine and orthopyroxene in a hybridized mantle source.


Research in Astronomy and Astrophysics | 2014

Operating principles and detection characteristics of the Visible and Near-Infrared Imaging Spectrometer in the Chang’e-3

Zhiping He; Binyong Wang; Gang Lu; Chunlai Li; Liyin Yuan; Rui Xu; Bin Liu; Kai Chen; Jianyu Wang

The Visible and Near-Infrared Imaging Spectrometer (VNIS), using two acousto-optic tunable filters as dispersive components, consists of a VIS/NIR imaging spectrometer (0.45–0.95 μm), a shortwave IR spectrometer (0.9–2.4 μm) and a calibration unit with dust-proofing functionality. The VNIS was utilized to detect the spectrum of the lunar surface and achieve in-orbit calibration, which satisfied the requirements for scientific detection. Mounted at the front of the Yutu rover, lunar objects that are detected with the VNIS with a 45° visual angle to obtain spectra and geometrical data in order to analyze the mineral composition of the lunar surface. After landing successfully on the Moon, the VNIS performed several explorations and calibrations, and obtained several spectral images and spectral reflectance curves of the lunar soil in the region of Mare Imbrium. This paper describes the working principle and detection characteristics of the VNIS and provides a reference for data processing and scientific applications.


Laser Physics Letters | 2013

Characteristics of a diode-pumped Yb:CaF2-SrF2 mode-locked laser using a carbon nanotube absorber

Jie Liu; Chao Feng; Lin Su; Dapeng Jiang; L. H. Zheng; Xiaobo Qian; Jianyu Wang; J. Xu; Wang Y

Yb:CaF2–SrF2 disordered crystals are successfully grown by the TGT method. By using a double-walled carbon nanotube saturable absorber (DWCNT-SA), the continuous-wave mode-locked (CWML) laser properties of Yb:CaF2–SrF2 crystals are demonstrated under diode pumping for the first time. The mode-locked laser delivers pulses as short as 5 ps at a center wavelength of 1045.5 nm without any dispersion compensation. The oscillator operating at a repetition rate of ~87 MHz delivers 292 mW average output power.


International Symposium on Photoelectronic Detection and Imaging 2011: Space Exploration Technologies and Applications | 2011

Imaging spectrometer based on AOTF and its prospects in deep-space exploration application

Zhiping He; Rong Shu; Jianyu Wang

The Acousto-Optical Tunable Filter (AOTF) is an electronically tunable optical filter based on Acousto-optic effect and has its own special compared with other dispersive parts. Because its characteristics of electronic tunable spectral selection, rapid response and simple structure, imaging spectrometer based on AOTF is a useful high-spectral technology, especially in deep space exploration applications. This paper introduces two imaging spectrometers, a VIS-NIR Imaging Spectrometer (VNIS) built as a payload instrument for lunar detection and a whiskbroom imaging spectrometer (WIS) with programmable spectral sampling. VNIS provides programmable spectral selection from 0.45 to 2.4 μm and includes two channels, a V-NIR hyper-spectral imager (0.45 to 0.95μm) and a SWIR spectrograph (0.9 to 2.4μm), with a spectral overlap of 0.05μm. WIS is a kind of scanning, spectral programmable imaging spectrometer, includes a scanning mechanism and a programmable spectral selection spectrometer. In the end, the prospects in deep-space exploration application are discussed.

Collaboration


Dive into the Jianyu Wang's collaboration.

Top Co-Authors

Avatar

Jianjun Jia

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rong Shu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhiping He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jincai Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liyin Yuan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunlai Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shiji Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yueming Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jia Qiang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge