Jiao Jiao Li
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiao Jiao Li.
Acta Biomaterialia | 2012
Seyed-Iman Roohani-Esfahani; Zufu Lu; Jiao Jiao Li; Rutledge Ellis-Behnke; David L. Kaplan; Hala Zreiqat
We here present the first successful report on combining nanostructured silk and poly(ε-caprolactone) (PCL) with a ceramic scaffold to produce a composite scaffold that is highly porous (porosity ∼85%, pore size ∼500 μm, ∼100% interconnectivity), strong and non-brittle with a surface that resembles extracellular matrix (ECM). The ECM-like surface was developed by self-assembly of nanofibrous structured silk (20-80 nm diameter, similar to native collagen found in ECM) over a thin PCL layer which is coated on biphasic calcium phosphate (BCP) scaffolds. The effects of different concentrations of silk solution on the mechanical and physical properties of the scaffolds were also comprehensively examined. Our results showed that using silk only (irrespective of concentration) for the modification of ceramic scaffolds could drastically reduce the compressive strength of the modified scaffolds in aqueous media, and the modification made a limited contribution to improving scaffold toughness. Using PCL/nanostructured silk the compressive strength and modulus of the modified scaffolds reached 0.42 MPa (compared with 0.07 MPa for BCP) and ∼25 MPa (compared with 5 MPa for BCP), respectively. The failure strain of the modified scaffold increased more than 6% compared with a BCP scaffold (failure strain of less than 1%), indicating a transformation from brittle to elastic behavior. The cytocompatibility of ECM-like composite scaffolds was investigated by studying the attachment, morphology, proliferation and bone-related gene expression of primary human bone-derived cells. Cells cultured on the developed scaffolds for 7 days had significant up-regulation of cell proliferation (∼1.6-fold higher, P<0.001) and osteogenic gene expression levels (collagen type I, osteocalcin and bone sialoprotein) compared with the other groups tested.
Journal of Materials Chemistry B | 2014
Jiao Jiao Li; David L. Kaplan; Hala Zreiqat
The management and reconstruction of damaged or diseased skeletal tissues have remained a significant global healthcare challenge. The limited efficacy of conventional treatment strategies for large bone, cartilage and osteochondral defects has inspired the development of scaffold-based tissue engineering solutions, with the aim of achieving complete biological and functional restoration of the affected tissue in the presence of a supporting matrix. Nevertheless, significant regulatory hurdles have rendered the clinical translation of novel scaffold designs to be an inefficient process, mainly due to the difficulties of arriving at a simple, reproducible and effective solution that does not rely on the incorporation of cells and/or bioactive molecules. In the context of the current clinical situation and recent research advances, this review will discuss scaffold-based strategies for the regeneration of skeletal tissues, with focus on the contribution of bioactive ceramic scaffolds and silk fibroin, and combinations thereof, towards the development of clinically viable solutions.
Biomacromolecules | 2013
Jiao Jiao Li; Eun Seok Gil; Rebecca S. Hayden; Chunmei Li; Seyed-Iman Roohani-Esfahani; David L. Kaplan; Hala Zreiqat
Ceramic scaffolds such as biphasic calcium phosphate (BCP) have been widely studied and used for bone regeneration, but their brittleness and low mechanical strength are major drawbacks. We report the first systematic study on the effect of silk coating in improving the mechanical and biological properties of BCP scaffolds, including (1) optimization of the silk coating process by investigating multiple coatings, and (2) in vitro evaluation of the osteogenic response of human mesenchymal stem cells (hMSCs) on the coated scaffolds. Our results show that multiple silk coatings on BCP ceramic scaffolds can achieve a significant coating effect to approach the mechanical properties of native bone tissue and positively influence osteogenesis by hMSCs over an extended period. The silk coating method developed in this study represents a simple yet effective means of reinforcement that can be applied to other types of ceramic scaffolds with similar microstructure to improve osteogenic outcomes.
Acta Biomaterialia | 2013
Seyed-Iman Roohani-Esfahani; Colin R. Dunstan; Jiao Jiao Li; Zufu Lu; B. Davies; S. Pearce; J. Field; R. Williams; Hala Zreiqat
During the past two decades, research on ceramic scaffolds for bone regeneration has progressed rapidly; however, currently available porous scaffolds remain unsuitable for load-bearing applications. The key to success is to apply microstructural design strategies to develop ceramic scaffolds with mechanical properties approaching those of bone. Here we report on the development of a unique microstructurally designed ceramic scaffold, strontium-hardystonite-gahnite (Sr-HT-gahnite), with 85% porosity, 500μm pore size, a competitive compressive strength of 4.1±0.3MPa and a compressive modulus of 170±20MPa. The in vitro biocompatibility of the scaffolds was studied using primary human bone-derived cells. The ability of Sr-HT-gahnite scaffolds to repair critical-sized bone defects was also investigated in a rabbit radius under normal load, with β-tricalcium phosphate/hydroxyapatite scaffolds used in the control group. Studies with primary human osteoblast cultures confirmed the bioactivity of these scaffolds, and regeneration of rabbit radial critical defects demonstrated that this material induces new bone defect bridging, with clear evidence of regeneration of original radial architecture and bone marrow environment.
Journal of Materials Chemistry B | 2015
Jiao Jiao Li; Kyungsook Kim; Seyed-Iman Roohani-Esfahani; Jin Guo; David L. Kaplan; Hala Zreiqat
Significant clinical challenges encountered in the effective long-term treatment of osteochondral defects have inspired advancements in scaffold-based tissue engineering techniques to aid repair and regeneration. This study reports the development of a biphasic scaffold produced via a rational combination of silk fibroin and bioactive ceramic with stratified properties to satisfy the complex and diverse regenerative requirements of osteochondral tissue. Structural examination showed that the biphasic scaffold contained two phases with different pore morphologies to match the cartilage and bone segments of osteochondral tissue, which were joined at a continuous interface. Mechanical assessment showed that the two phases of the biphasic scaffold imitated the load-bearing behaviour of native osteochondral tissue and matched its compressive properties. In vitro testing showed that different compositions in the two phases of the biphasic scaffold could direct the preferential differentiation of human mesenchymal stem cells towards the chondrogenic or osteogenic lineage. By featuring simple and reproducible fabrication and a well-integrated interface, the biphasic scaffold strategy established in this study circumvented the common problems experienced with integrated scaffold designs and could provide an effective approach for the regeneration of osteochondral tissue.
Nanomedicine: Nanotechnology, Biology and Medicine | 2015
Zufu Lu; Seyed-Iman Roohani-Esfahani; Jiao Jiao Li; Hala Zreiqat
The lack of complete understanding in the signalling pathways that control the osteogenic differentiation of mesenchymal stem cells hinders their clinical application in the reconstruction of large bone defects and non-union bone fractures. The aim of this study is to gain insight into the interactions of bone morphogenetic protein-2 (BMP-2) and bone biomimetic scaffolds in directing osteogenic differentiation of adipose tissue-derived mesenchymal stem cells (ASCs) and the underlying signalling pathways involved. We demonstrated that bioactive glass nanoparticles (nBG) incorporated polycaprolactone (PCL) coating on hydroxyapatite/β-tricalcium phosphate (HA/TCP) scaffold exerted a synergistic effect with 3days of BMP-2 treatment in promoting osteogenic gene expression levels (Runx-2, collagen I, osteopontin and bone sialoprotein) and alkaline phosphatase activity in ASCs. Furthermore, we revealed that the synergistic effect was mediated through a mechanism of activating β1-integrin and induction of Wnt-3a autocrine signalling pathways by nBG incorporated scaffold.
Biomedical Materials | 2016
Jiao Jiao Li; Seyed-Iman Roohani-Esfahani; Colin R. Dunstan; Terrence Quach; Roland Steck; Siamak Saifzadeh; Peter Pivonka; Hala Zreiqat
The treatment of large bone defects, particularly those with segmental bone loss, remains a significant clinical challenge as current approaches involving surgery or bone grafting often do not yield satisfactory long-term outcomes. This study reports the evaluation of novel ceramic scaffolds applied as bone graft substitutes in a clinically relevant in vivo model. Baghdadite scaffolds, unmodified or modified with a polycaprolactone coating containing bioactive glass nanoparticles, were implanted into critical-sized segmental bone defects in sheep tibiae for 26 weeks. Radiographic, biomechanical, μ-CT and histological analyses showed that both unmodified and modified baghdadite scaffolds were able to withstand physiological loads at the defect site, and induced substantial bone formation in the absence of supplementation with cells or growth factors. Notably, all samples showed significant bridging of the critical-sized defect (average 80%) with evidence of bone infiltration and remodelling within the scaffold implant. The unmodified and modified baghdadite scaffolds achieved similar outcomes of defect repair, although the latter may have an initial mechanical advantage due to the nanocomposite coating. The baghdadite scaffolds evaluated in this study hold potential for use as purely synthetic bone graft substitutes in the treatment of large bone defects while circumventing the drawbacks of autografts and allografts.
Advanced Healthcare Materials | 2018
Jiao Jiao Li; Mohamed Ebied; Jen Xu; Hala Zreiqat
The successful regeneration of bone tissue to replace areas of bone loss in large defects or at load-bearing sites remains a significant clinical challenge. Over the past few decades, major progress is achieved in the field of bone tissue engineering to provide alternative therapies, particularly through approaches that are at the interface of biology and engineering. To satisfy the diverse regenerative requirements of bone tissue, the field moves toward highly integrated approaches incorporating the knowledge and techniques from multiple disciplines, and typically involves the use of biomaterials as an essential element for supporting or inducing bone regeneration. This review summarizes the types of approaches currently used in bone tissue engineering, beginning with those primarily based on biology or engineering, and moving into integrated approaches in the areas of biomaterial developments, biomimetic design, and scalable methods for treating large or load-bearing bone defects, while highlighting potential areas for collaboration and providing an outlook on future developments.
BMJ Open | 2017
Munjed Al Muderis; William Lu; Kevin Tetsworth; Belinda Bosley; Jiao Jiao Li
Introduction Lower limb amputations have detrimental influences on the quality of life, function and body image of the affected patients. Following amputation, prolonged rehabilitation is required for patients to be fitted with traditional socket prostheses, and many patients experience symptomatic socket–residuum interface problems which lead to reduced prosthetic use and quality of life. Osseointegration has recently emerged as a novel approach for the reconstruction of amputated limbs, which overcomes many of the socket-related problems by directly attaching the prosthesis to the skeletal residuum. To date, the vast majority of osseointegration procedures worldwide have been performed in 2 stages, which require at least 4 months and up to 18 months for the completion of reconstruction and rehabilitation from the time of the initial surgery. The current prospective cohort study evaluates the safety and efficacy of a single-stage osseointegration procedure performed under the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2), which dramatically reduces the time of recovery to ∼3–6 weeks. Methods and analysis The inclusion criteria for osseointegrated reconstruction under the OGAAP-2 procedure are age over 18 years, unilateral transfemoral amputation and experiencing problems or difficulties in using socket prostheses. All patients receive osseointegrated implants which are press-fitted into the residual bone. Functional and quality-of-life outcome measures are recorded preoperatively and at defined postoperative follow-up intervals up to 2 years. Postoperative adverse events are also recorded. The preoperative and postoperative values are compared for each outcome measure, and the benefits and harms of the single-stage OGAAP-2 procedure will be compared with the results obtained using a previously employed 2-stage procedure. Ethics and dissemination This study has received ethics approval from the University of Notre Dame, Sydney, Australia (014153S). The study outcomes will be disseminated by publications in peer-reviewed academic journals and presentations at relevant clinical and orthopaedic conferences.
Journal of Tissue Engineering and Regenerative Medicine | 2017
Jiao Jiao Li; Seyed-Iman Roohani-Esfahani; Kyungsook Kim; David L. Kaplan; Hala Zreiqat
Bioactive ceramic scaffolds represent competitive choices for clinical bone reconstruction, but their widespread use is restricted by inherent brittleness and weak mechanical performance under load. This study reports the development of strong and tough bioactive scaffolds suitable for use in load‐bearing bone reconstruction. A strong and bioactive ceramic scaffold (strontium–hardystonite–gahnite) is combined with single and multiple coating layers of silk fibroin to enhance its toughness, producing composite scaffolds which match the mechanical properties of cancellous bone and show enhanced capacity to promote in vitro osteogenesis. Also reported for the first time is a comparison of the coating effects obtained when a polymeric material is coated on ceramic scaffolds with differing microstructures, namely the strontium–hardystonite–gahnite scaffold with high‐density struts as opposed to a conventional ceramic scaffold, such as biphasic calcium phosphate, with low‐density struts. The results show that silk coating on a unique ceramic scaffold can lead to simple and effective enhancement of its mechanical and biological properties to suit a wider range of applications in clinical bone reconstruction, and also establish the influence of ceramic microstructure on the effectiveness of silk coating as a method of reinforcement when applied to different types of ceramic bone graft substitutes. Copyright