Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiao Jiao Zhang is active.

Publication


Featured researches published by Jiao Jiao Zhang.


Scientific Reports | 2017

Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes

Jiao Jiao Zhang; Jin Oh Jo; Do Luong Huynh; Raj Kumar Mongre; Mrinmoy Ghosh; Amit Singh; Sang Baek Lee; Young Sun Mok; Park Hyuk; Dong Kee Jeong

This study was conducted to determine the effects of argon plasma on the growth of soybean [Glycine max (L.) Merr.] sprouts and investigate the regulation mechanism of energy metabolism. The germination and growth characteristics were modified by argon plasma at different potentials and exposure durations. Upon investigation, plasma treatment at 22.1 kV for 12 s maximized the germination and seedling growth of soybean, increasing the concentrations of soluble protein, antioxidant enzymes, and adenosine triphosphate (ATP) as well as up-regulating ATP a1, ATP a2, ATP b1, ATP b2, ATP b3, target of rapamycin (TOR), growth-regulating factor (GRF) 1–6, down-regulating ATP MI25 mRNA expression, and increasing the demethylation levels of the sequenced region of ATP a1, ATP b1, TOR, GRF 5, and GRF 6 of 6-day-old soybean sprouts. These observations indicate that argon plasma promotes soybean seed germination and sprout growth by regulating the demethylation levels of ATP, TOR, and GRF.


Oncotarget | 2017

MicroRNA-128 suppresses paclitaxel-resistant lung cancer by inhibiting MUC1-C and BMI-1 in cancer stem cells

Hyebin Koh; Hyeri Park; Nisansala Chandimali; Do Luong Huynh; Jiao Jiao Zhang; Mrinmoy Ghosh; Meeta Gera; Nameun Kim; Yesol Bak; Do-Young Yoon; Yang Ho Park; Taeho Kwon; Dong Kee Jeong

The existence of cancer stem cells (CSCs) is the main reason for failure of cancer treatment caused by drug resistance. Therefore, eradicating cancers by targeting CSCs remains a significant challenge. In the present study, because of the important role of BMI-1 proto-oncogene, polycomb ring finger (BMI-1) and C-terminal Mucin1 (MUC1-C) in tumor growth and maintenance of CSCs, we aimed to confirm that microRNA miR-128, as an inhibitor of BMI-1 and MUC1-C, could effectively suppress paclitaxel (PTX)-resistant lung cancer stem cells. We showed that CSCs have significantly higher expression levels of BMI-1, MUC1-C, stemness proteins, signaling factors, and higher malignancy compared with normal tumor cells. After transfection with miR-128, the BMI-1 and MUC1-C levels in CSCs were suppressed. When miR-128 was stably expressed in PTX-resistant lung cancer stem cells, the cells showed decreased proliferation, metastasis, self-renewal, migration, invasive ability, clonogenicity, and tumorigenicity in vitro and in vivo and increased apoptosis compared with miR-NC (negative control) CSCs. Furthermore, miR-128 effectively decreased the levels of β-catenin and intracellular signaling pathway-related factors in CSCs. MiR-128 also decreased the luciferase activity of MUC1 reporter constructs and reduced the levels of transmembrane MUC1-C and BMI-1. These results suggested miR-128 as an attractive therapeutic strategy for PTX-resistant lung cancer via inhibition of BMI-1 and MUC1-C.


Oncotarget | 2017

Lethality of inappropriate plasma exposure on chicken embryonic development

Jiao Jiao Zhang; Jin Oh Jo; Do Luong Huynh; Mrinmoy Ghosh; Nameun Kim; Sang Baek Lee; Hak Kyo Lee; Young Sun Mok; Taeho Kwon; Dong Kee Jeong

In this study, we examined the effects of non-thermal dielectric barrier discharge plasma on embryonic development in chicken eggs in order to determine the optimal level of plasma exposure for the promotion of embryonic growth. We exposed developing chicken embryos at either Hamburger-Hamilton (HH) stage 04 or HH 20 to plasma at voltages of 11.7 kV to 27.6 kV. Our results show exposure at 11.7 kV for 1 min promoted chicken embryonic development, but exposure to more duration and intensity of plasma resulted in dose-dependent embryonic death and HH 20 stage embryos survive longer than those at stage HH 04. Furthermore, plasma exposure for 4 min increased the production of reactive oxygen species (ROS) and inactivated the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response signaling pathway, resulting in suppression of antioxidant enzymes in the skeletal muscle tissue of the dead embryos. We also found decreased levels of adenosine triphosphate production and reductions in the expression levels of several growth-related genes and proteins. These findings indicate that inappropriate plasma exposure causes dose-dependent embryonic death via excessive accumulation of ROS, NRF2-antioxidant signaling pathway disruption, and decreased growth factor expression.


Cell Death and Disease | 2018

BRM270 inhibits cancer stem cell maintenance via microRNA regulation in chemoresistant A549 lung adenocarcinoma cells

Taeho Kwon; Nisansala Chandimali; Do Luong Huynh; Jiao Jiao Zhang; Nameun Kim; Yesol Bak; Do-Young Yoon; Dae-Yeul Yu; Jae Cheol Lee; Meeta Gera; Mrinmoy Ghosh; Yang Ho Park; Dong Kee Jeong

Chemotherapy is a standard treatment for non-small-cell lung cancer (NSCLC). However, the dose-limiting toxicity of drugs and the development of chemoresistance are major clinical challenges to successful management of NSCLC. Asian traditional medicine is gaining global attention as a non-toxic alternative to chemotherapy. BRM270 is an extract formulated from seven Asian medicinal plants that has been shown to inhibit tumor cell proliferation in diverse cancer types. We previously demonstrated that BRM270 suppresses tumorigenesis by negatively regulating nuclear factor-κB signaling in multidrug-resistant cancer stem cells (CSCs). In this study we report that the growth, migration, and invasion of normal human lung adenocarcinoma cells and their chemoresistant derivatives was inhibited by BRM270 treatment. Notably, BRM270 was found to modulate CSC self-renewal and tumor-initiating capacity via positive regulation of the miRNA-128. Thus, combination therapy with miRNA-128 and BRM270 may be an effective treatment strategy for chemoresistant NSCLC.


Scientific Reports | 2018

Non-thermal plasma treatment improves chicken sperm motility via the regulation of demethylation levels

Jiao Jiao Zhang; Huynh Luong Do; Nisansala Chandimali; Sang Baek Lee; Young Sun Mok; Nameun Kim; Seong Bong Kim; Taeho Kwon; Dong Kee Jeong

The quality of avian semen is an important economic trait in poultry production. The present study examines the in vitro effects of non-thermal dielectric barrier discharge plasma on chicken sperm to determine the plasma conditions that can produce the optimum sperm quality. Exposure to 11.7 kV of plasma for 20 s is found to produce maximum sperm motility by controlling the homeostasis of reactive oxygen species and boosting the release of adenosine triphosphate and respiratory enzyme activity in the mitochondria. However, prolonged exposure or further increase in plasma potential impairs the sperm quality in a time- and dose-dependent manner. Optimal plasma treatment of sperm results in upregulated mRNA and protein expression of antioxidant defense-related and energetic metabolism-related genes by increasing their demethylation levels. However, 27.6 kV of plasma exerts significant adverse effects. Thus, our findings indicate that appropriate plasma exposure conditions improve chicken sperm motility by regulating demethylation levels of genes involved in antioxidant defense and energetic metabolism.


Scientific Reports | 2018

MicroRNA-7450 regulates non-thermal plasma-induced chicken Sertoli cell apoptosis via adenosine monophosphate-activated protein kinase activation

Jiao Jiao Zhang; Xian Zhong Wang; Huynh Luong Do; Nisansala Chandimali; Tae Yoon Kang; Nameun Kim; Mrinmoy Ghosh; Sang Baek Lee; Young Sun Mok; Seong Bong Kim; Taeho Kwon; Dong Kee Jeong

Non-thermal plasma treatment is an emerging innovative technique with a wide range of biological applications. This study was conducted to investigate the effect of a non-thermal dielectric barrier discharge plasma technique on immature chicken Sertoli cell (SC) viability and the regulatory role of microRNA (miR)-7450. Results showed that plasma treatment increased SC apoptosis in a time- and dose-dependent manner. Plasma-induced SC apoptosis possibly resulted from the excess production of reactive oxygen species via the suppression of antioxidant defense systems and decreased cellular energy metabolism through the inhibition of adenosine triphosphate (ATP) release and respiratory enzyme activity in the mitochondria. In addition, plasma treatment downregulated miR-7450 expression and activated adenosine monophosphate-activated protein kinase α (AMPKα), which further inhibited mammalian target of rapamycin (mTOR) phosphorylation in SCs. A single-stranded synthetic miR-7450 antagomir disrupted mitochondrial membrane potential and decreased ATP level and mTOR phosphorylation by targeting the activation of AMPKα, which resulted in significant increases in SC lethality. A double-stranded synthetic miR-7450 agomir produced opposite effects on these parameters and ameliorated plasma-mediated apoptotic effects on SCs. Our findings suggest that miR-7450 is involved in the regulation of plasma-induced SC apoptosis through the activation of AMPKα and the further inhibition of mTOR signaling pathway.


Evidence-based Complementary and Alternative Medicine | 2018

The Novel Nutraceutical KJS018A Prevents Hepatocarcinogenesis Promoted by Inflammation

Do Luong Huynh; Nisansala Chandimali; Jiao Jiao Zhang; Nameun Kim; Yang Ho Park; Taeho Kwon; Dong Kee Jeong

Inflammation is tightly associated with carcinogenesis at both the initiation and development of tumor. Many reports indicated that Cox-2 substantially contributes to inflammation and tumorigenesis. The novel nutraceutical KJS018A (BRM270 Function Enhanced Products) is the extract mixture from 8 herbal plants, which have been used to inhibit cancers and inflammation. The aim of the present study is to examine the inhibitory effects of KJS018A mixture to hepatocarcinogenesis and inflammation. The results showed that KJS018A significantly inhibited the proliferation of hepatic malignant cells and downregulated levels of IL-6 and Cox-2. Furthermore, KJS018A diminished the effect of PMA, an inflammatory inducer via IL-6/STAT3/Cox-2 pathway. Furthermore, KJS018A suppressed metastatic traits of hepatic malignant cells via downregulating Twist, N-cadherin, and MMP-9 while restoring E-cadherin expression. KJS018A also restrained tumor growth and levels of IL-6 and Cox-2 in immunohistochemistry staining. Taken together, these data suggest potential application of KJS018A in prevention of hepatocarcinogenesis promoted by inflammation.


Cancer Gene Therapy | 2018

MicroRNA-122 negatively associates with peroxiredoxin-II expression in human gefitinib-resistant lung cancer stem cells

Nisansala Chandimali; Do Luong Huynh; Jiao Jiao Zhang; Jae Cheol Lee; Dae-Yeul Yu; Dong Kee Jeong; Taeho Kwon

Previously, we demonstrated that Prx II is important for survival of the gefitinib-resistant A549 (A549/GR) cell line, an NSCLC cell line derived by repeated exposure to gefitinib. Therefore, in this study, we used A549/GR cells to investigate the role of Prx II in GR NSCLC stemness. Initially, to explore the stemness characteristics and investigate the association of Prx II with those stemness characteristics, we successfully isolated a stem cell-like population from A549/GR cells. A549/GR CD133+ cells possessed important cancer stemness characteristics, including the abilities to undergo metastasis, angiogenesis, self-renewal, and to express stemness genes and epithelial–mesenchymal transition (EMT) markers. However, those characteristics were abolished by knocking down Prx II expression. MicroRNA 122 (miR-122) targets Prx II in A549/GR cancer stem cells (CSCs), thereby inhibiting the stemness characteristics in vitro and in vivo. Next, we investigate whether miR-122 overexpression was associated with Prx II expression and Prx-II-induced stemness characteristics, we transfected miR-122 into A549/GR CSCs. MiR-122 inhibited A549/GR stemness by downregulating the Hedgehog, Notch, and Wnt/β-catenin pathways. Taken together, our data suggest that Prx II promotes A549/GR stemness, and that targeting Prx II and miR-122 is a potentially viable strategy for anti-cancer-stem cell therapy in GR NSCLCs.


Biochemical and Biophysical Research Communications | 2018

SALL4 suppresses reactive oxygen species in pancreatic ductal adenocarcinoma phenotype via FoxM1/Prx III axis

Do Luong Huynh; Jiao Jiao Zhang; Nisansala Chandimali; Mrinmoy Ghosh; Meeta Gera; Nameun Kim; Yang Ho Park; Taeho Kwon; Dong Kee Jeong

Pancreatic ductal adenocarcinoma (PDAC) is a major malignant phenotype in pancreatic cancer, which is one of the most death causes by cancer in the world. PDAC developed from pancreatic intra-epithelial neoplasms (PanINs) and poorly diagnosed at early stages. Beside of high drug resistance, metastasis is the great concern during pancreatic cancer treatment. SALL4 expression is inherent in the upregulations of endothelial mesenchymal transition (EMT) genes and therefore promoting cancer metastasis. Furthermore, some of evidences indicated reactive oxygen species (ROS) is also influent to metastasis and self-antioxidant capacity seems a gold standard for successful metastasis rate. In this study, we have found the role Spalt like protein 4 (SALL4) to PDAC proliferation, mobility and its regulation to mitochondrial ROS via FoxM1/Prx III axis. It is possible that SALL4 mainly induces endothelial-mesenchymal transition (EMT) phenotype and favors ROS loss to facilitate metastasis efficiency in PDAC cells. Therefore, SALL4 might be a promising marker for PDAC treatment and targeting SALL4 would benefit anti-proliferative and anti-metastasis therapies.


Journal of Physics D | 2018

Growth and male reproduction improvement of non-thermal dielectric barrier discharge plasma treatment on chickens

Jiao Jiao Zhang; Do Luong Huynh; Nisansala Chandimali; Tae Yoon Kang; Nameun Kim; Young Sun Mok; Taeho Kwon; Dong Kee Jeong

Collaboration


Dive into the Jiao Jiao Zhang's collaboration.

Top Co-Authors

Avatar

Dong Kee Jeong

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Taeho Kwon

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Do Luong Huynh

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Nameun Kim

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Mrinmoy Ghosh

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young Sun Mok

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Meeta Gera

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Sang Baek Lee

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Dae-Yeul Yu

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge