Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiao Shen is active.

Publication


Featured researches published by Jiao Shen.


Neuroscience Letters | 2005

Olfactory stimulation with scent of grapefruit oil affects autonomic nerves, lipolysis and appetite in rats

Jiao Shen; Akira Niijima; Mamoru Tanida; Yuko Horii; Keiko Maeda; Katsuya Nagai

In a previous study, we found that olfactory stimulation with scent of grapefruit oil (SGFO) excites the sympathetic nerve innervating the white adipose tissue in rats. Here we further examined the effects of SGFO in rats and observed that olfactory stimulation with SGFO excited the sympathetic nerves innervating the brown adipose tissue and adrenal gland and inhibited the parasympathetic gastric nerve. Local anesthesia of the nasal mucosa with xylocaine or anosmic treatment using ZnSO4 eliminated the autonomic changes caused by SGFO. Moreover, stimulation with SGFO elevated the plasma glycerol level, and treatment with either ZnSO4 or an intraperitoneal injection of diphenhydramine, a histamine H1 receptor-antagonist, abolished the glycerol elevation by SGFO. Furthermore, a 15-min exposure to SGFO three times a week reduced food intake and body weight. Finally, limonene, a component of grapefruit oil, induced responses similar to those caused by SGFO, and diphenhydramine eliminated the glycerol response to limonene. Thus, the scent of grapefruit oil, and particularly its primary component limonene, affects autonomic nerves, enhances lipolysis through a histaminergic response, and reduces appetite and body weight.


Neuroscience Letters | 2006

Olfactory stimulation with scent of lavender oil affects autonomic neurotransmission and blood pressure in rats

Mamoru Tanida; Akira Niijima; Jiao Shen; Takuo Nakamura; Katsuya Nagai

Previously, we observed that olfactory stimulation with scent of lavender oil (SLVO) suppressed sympathetic nerve activities and elevated gastric vagal (parasympathetic) nerve activity (GVNA), decreased plasma glycerol concentration and body temperature, and enhanced appetite in rats. Here, we further showed that olfactory stimulation with SLVO lowered renal sympathetic nerve activity (RSNA) and blood pressure (BP) and elevated GVNA in urethane-anesthetized rats. Olfactory stimulation with linalool, a component of lavender oil, also elicited decreases in RSNA and BP and an increase in GVNA in urethane-anesthetized rats. Anosmia induced by pretreatment of the nasal cavity by application of ZnSO4 eliminated the effects of both SLVO and scent of linalool on RSNA, GVNA and BP. Furthermore, intracerebroventricular administration of thioperamide, a histaminergic H3-antagonist, abolished the suppression of RSNA and BP as well as the elevation of GVNA mediated by both SLVO and scent of linalool. Finally, bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) eliminated RSNA and BP suppression and the elevation of GVNA due to SLVO or linalool. Thus, it was concluded that scent of lavender oil and its active component, linalool, affects autonomic neurotransmission and reduces blood pressure through the central histaminergic nervous system and the SCN.


Experimental Biology and Medicine | 2007

Effects of Adiponectin on the Renal Sympathetic Nerve Activity and Blood Pressure in Rats

Mamoru Tanida; Jiao Shen; Yuko Horii; Morihiro Matsuda; Shinji Kihara; Toru Funahashi; Iichiro Shimomura; Hajime Sawai; Yutaka Fukuda; Yuji Matsuzawa; Katsuya Nagai

Adiponectin is an adipocytokine that modulates energy homeostasis and glucose metabolism. Here, we examined the effects of acute intravenous (iv) and lateral cerebral ventricular (LCV) injections of adiponectin on the renal sympathetic nerve activity (RSNA) and blood pressure (b/p) in urethane-anesthetized rats. Both iv and LCV injections of adiponectin induced dose-dependent suppressions of RSNA and b/p. Moreover, we found that bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) abolished the effects of iv injection of adiponectin on RSNA and b/p. These findings suggest that adiponectin decreases the RSNA and b/p in a dose-dependent manner and that the SCN is implicated in mechanism of adiponectin actions on RSNA and b/p. These findings also suggest that the hypotensive-action activity of adiponectin is realized, at least partially, via changes in activities of autonomic nerves activity.


Obesity Research & Clinical Practice | 2008

High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats.

Mamoru Tanida; Jiao Shen; Keiko Maeda; Yuko Horii; Toshihiko Yamano; Yoichi Fukushima; Katsuya Nagai

SUMMARY In a recent study, we obtained some evidences that probiotic strain Lactobacillus affects the autonomic nerve activities and regulates blood glucose and cardiovascular function. In the study presented here, we found that long-term ingestion of the lactobacillus strain Lactobacillus paracasei ST11 (NCC2461) reduced body weight and abdominal fat weight. To investigate possible role of autonomic nerves in anti-obesity action of NCC2461, we examined the effects of intraduodenal (ID) injection of the lactobacillus strain L. paracasei ST11 (NCC2461) on sympathetic nerve activity innervating white adipose tissue (WAT-SNA) in urethane-anesthetized rats, and found that it accelerated WAT-SNA. Moreover, intraduodenal (ID) injection of NCC2461 increased in sympathetic nerve activity innervating brown adipose tissue (BAT-SNA) and decreased in hepatic vagal nerve activity (HVNA). In addition, using conscious rats, we examined the effects of intra-gastric (IG) injection of NCC2461 on lipolysis and BAT thermogenesis, and observed that it clearly elevated the plasma FFA level, BAT temperature and abdominal temperature. Thus, these data suggest that the NCC2461 affects autonomic nerves, enhances lipolysis, and reduces body weight in rats.:


Neuroscience Letters | 2007

In vivo effects of leptin on autonomic nerve activity and lipolysis in rats.

Jiao Shen; Mamoru Tanida; Akira Niijima; Katsuya Nagai

Leptin, a 16-kDa protein, is produced by white adipose tissue (WAT), and is thought to serve as a feedback signal indicating the size of fat stores. Considerable amount of data have shown that leptin can mediate lipid metabolism. However, its possible direct effects on the metabolism of lipids in vivo and the mechanisms involved have not been fully characterized. In this study, we investigated the in vivo effects of leptin on the autonomic nerve activity and lipolysis. We found that intravenous administration of leptin (10 microg/rat) excited the sympathetic nerves innervating WAT, and this effect was abolished by the pretreatment with diphenhydramine, a histamine H(1) receptor antagonist. Moreover, intraperitoneal administration of leptin (130 microg/kg) elevated the levels of plasma glycerol and free fatty acid (FFA). The effect of leptin on plasma FFA was eliminated by pretreatment with diphenhydramine and propranolol, a beta-adrenergic receptor blocker, and disappeared in suprachiasmatic nucleus (SCN)-lesioned rats. Our results suggest that leptin might regulate the lipolytic processes in adipose tissue through facilitation of the sympathetic nerves, driven by histamine neurons through the H(1) receptor, and a beta-adrenergic receptor, probably the beta(3)-receptor, is involved in the lipolytic response to leptin. The actions of leptin in this study are supposed to be controlled by the SCN.


Neuroscience Letters | 2007

Auditory stimulation affects renal sympathetic nerve activity and blood pressure in rats

Takuo Nakamura; Mamoru Tanida; Akira Niijima; Hiroshi Hibino; Jiao Shen; Katsuya Nagai

Here, we examined the effects of auditory stimulation at 50 dB with white noise (WN) or music (Traeumerei [TM] by Schumann or Etude by Chopin) on renal sympathetic nerve activity (RSNA) and BP in urethane-anesthetized rats. Auditory stimulation with TM, but not with WN or the Etude, significantly decreased RSNA and BP. Complete bilateral destruction of the cochleae and bilateral lesions of the auditory cortex (AuC) eliminated the effects of TM stimulation on RSNA and BP, but bilateral lesions of primary somatosensory cortex (S1C) had no effect. Bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) or intracerebral administration of thioperamide, a histaminergic H3 receptor antagonist, also abolished TM-induced decreases in RSNA and BP. These findings suggest that exposure to music can decrease RSNA and BP through the auditory pathway, histaminergic neurons, and the SCN.


Amino Acids | 2012

Role of l-carnosine in the control of blood glucose, blood pressure, thermogenesis, and lipolysis by autonomic nerves in rats: involvement of the circadian clock and histamine

Katsuya Nagai; Mamoru Tanida; Akira Niijima; Nobuo Tsuruoka; Yoshinobu Kiso; Yuko Horii; Jiao Shen; Nobuaki Okumura

Abstractl-Carnosine (β-alanyl-l-histidine; CAR) is synthesized in mammalian skeletal muscle. Although the physiological roles of CAR have not yet been clarified, there is evidence that the release of CAR from skeletal muscle during physical exercise affects autonomic neurotransmission and physiological functions. In particular, CAR affects the activity of sympathetic and parasympathetic nerves innervating the adrenal glands, liver, kidney, pancreas, stomach, and white and brown adipose tissues, thereby causing changes in blood pressure, blood glucose, appetite, lipolysis, and thermogenesis. CAR-mediated changes in neurotransmission and physiological functions were eliminated by histamine H1 or H3 receptor antagonists (diphenhydramine or thioperamide) and bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN), a master circadian clock. Moreover, a carnosine-degrading enzyme (carnosinase 2) was shown to be localized to histamine neurons in the hypothalamic tuberomammillary nucleus (TMN). Thus, CAR released from skeletal muscle during exercise may be transported into TMN-histamine neurons and hydrolyzed. The resulting l-histidine may subsequently be converted into histamine, which could be responsible for the effects of CAR on neurotransmission and physiological function. Thus, CAR appears to influence hypoglycemic, hypotensive, and lipolytic activity through regulation of autonomic nerves and with the involvement of the SCN and histamine. These findings are reviewed and discussed in the context of other recent reports, including those on carnosine synthetases, carnosinases, and carnosine transport.


Neuroscience Letters | 2007

Autonomic and cardiovascular responses to scent stimulation are altered in cry KO mice.

Mamoru Tanida; Atsushi Yamatodani; Akira Niijima; Jiao Shen; Takeshi Todo; Katsuya Nagai

Previously, we observed that in rats, olfactory stimulation with scent of grapefruit oil (SGFO) elevates the activities of sympathetic nerves. SGFO also suppresses gastric vagal (parasympathetic) nerve activity (GVNA), increases the plasma glycerol concentration, blood pressure (BP) and body temperature, and reduces appetite. In contrast, olfactory stimulation with scent of lavender oil (SLVO) has opposite effects in rats. Here, we show that in mice, olfactory stimulation with SGFO elevated activities of sympathetic nerves innervating the kidney, adrenal gland and brown adipose tissue as well as increasing BP and suppressing GVNA, whereas olfactory stimulation with SLVO decreased these sympathetic nerve activities and BP, and elevated GVNA. Electrolytic lesions of the mouse hypothalamic suprachiasmatic nucleus (SCN) eliminated changes in renal sympathetic nerve activity (RSNA), BP and GVNA induced by either SGFO or SLVO. Furthermore, SGFO-induced elevations in RSNA and BP and the SLVO-induced GVNA increase were not observed in Cryptochrome (Cry)-deficient mice, which harbor mutations in both cry1 and cry2 and lack normal circadian rhythms. These findings suggest that SGFO and SLVO affect autonomic neurotransmission and BP via the SCN in mice. Moreover, the molecular clock mechanism in the SCN, which involves the cry1 and cry2 genes, is partially involved in mediating these autonomic and cardiovascular actions of SGFO and SLVO.


Neuroscience Letters | 2008

Biphasic effects of orexin-A on autonomic nerve activity and lipolysis.

Jiao Shen; Mamoru Tanida; Jia-fei Yao; Akira Niijima; Katsuya Nagai

Previously, we showed that orexin-A, a 33-aa peptide, influences renal sympathetic nerve activity. Because the autonomic nervous system plays an important role in the regulation of lipid metabolism, we investigated the in vivo effects of orexin-A on the sympathetic nerve activity innervating white adipose tissue (WAT-SNA) and lipolysis. We found that intracerebroventricular (icv) administration of orexin-A at doses of 1 microg/rat and 10 ng/rat elevated and suppressed WAT-SNA, respectively. The effect of the high dose of orexin-A (1 microg/rat) was eliminated by pretreatment with diphenhydramine hydrochloride, a histamine H(1) receptor antagonist. In contrast, the effect of the low dose of orexin-A (10 ng/rat) was suppressed by thioperamide maleate salt, a histamine H(3) receptor antagonist. Moreover, icv administration of 1 microg/rat and 10 ng/rat of orexin-A increased and decreased the levels of plasma free fatty acids (FFAs), respectively. The effect of 1 microg/rat of orexin-A on plasma FFA was eliminated by propranolol hydrochloride, a beta-adrenergic receptor blocker, and also by diphenhydramine. The effect of orexin-A at dose of 10 ng/rat disappeared by pretreatment with atropine sulfate, a muscarinic receptor blocker, and thioperamide maleate salt. Our results suggest that high doses of orexin-A may regulate the lipolytic processes in adipose tissue through facilitation of the sympathetic nervous system, which is driven by histamine neurons through the H(1) receptor, and that the beta(3)-receptor may be involved in this enhanced lipolytic response. Low doses of orexin-A, on the other hand, may lower lipolysis by suppressing sympathetic nerve activity via the H(3)-receptor, and the muscarinic receptor may be related to this response.


Regulatory Peptides | 2007

Effects of central injection of L-carnosine on sympathetic nerve activity innervating brown adipose tissue and body temperature in rats.

Mamoru Tanida; Hitoshi Gotoh; Hiroyuki Taniguchi; Hiroto Otani; Jiao Shen; Takuo Nakamura; Nobuo Tsuruoka; Yoshinobu Kiso; Nobuaki Okumura; Katsuya Nagai

In the present study, using urethane-anesthetized rats, we examined the effects of intralateral cerebral ventricular (LCV) injection of various doses of L-carnosine on neural activity innervating brown adipose tissue (BAT-SNA) and body temperature (BT). We found that injection of a low dose of L-carnosine (0.01 microg) suppressed BAT-SNA significantly. Conversely, a high dose (100 microg) of L-carnosine significantly elevated BAT-SNA. In the light period (14:00), brown adipose tissue temperature (BAT-T) and BT were suppressed after low and elevated after high dose injection of L-carnosine whereas in the dark period (2:00), these parameters remained unchanged with L-carnosine treatment. Bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) abolished the effects of low and high doses of L-carnosine on BAT-SNA, BAT-T and BT. Furthermore, high dose treatment with L-carnosine altered c-Fos induction in the SCN and the PVN. These results suggest that l-carnosine affects BAT-SNA, BAT-T and BT in a dose-dependent manner in the rat, and that the SCN may be involved in these effects.

Collaboration


Dive into the Jiao Shen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mamoru Tanida

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshihiro Nakashima

Kyoto Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge