Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiaoti Huang is active.

Publication


Featured researches published by Jiaoti Huang.


Cell | 1994

Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation

Taly Spivak-Kroizman; Mark A. Lemmon; Ivan Dikic; John E. Ladbury; Dalia Pinchasi; Jiaoti Huang; Gregg Crumley; Joseph Schlessinger; Irit Lax

Heparin is required for fibroblast growth factor (FGF) stimulation of biological responses. Using isothermal titration calorimetry, we show that acidic FGF (aFGF) forms a 1:1 complex with the soluble extracellular domain of FGF receptor (FGFR). Heparin exerts its effect by binding to many molecules of aFGF. The resulting aFGF-heparin complex can bind to several receptor molecules, leading to FGFR dimerization. In two cell lines lacking endogenous heparan sulfate, exogenous heparin is required for FGFR dimerization, tyrosine kinase activation, c-fos mRNA transcription, and cell proliferation. Moreover, a synthetic heparin analog that binds monovalently to aFGF blocks FGFR dimerization, activation, and signaling via FGFR. We propose that heparin causes oligomerization of aFGF such that its binding to FGFR results in dimerization and activation. This represents a novel mechanism for transmembrane signaling and may account for the action of many heparin-bound growth factors.


Angewandte Chemie | 2011

Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers

Shutao Wang; Kan Liu; Jian Liu; Zeta T.F. Yu; Xiaowen Xu; Libo Zhao; Thomas H. Lee; Eun Kyung Lee; Jean Reiss; Yi-Kuen Lee; Leland W.K. Chung; Jiaoti Huang; Matthew Rettig; David Seligson; Kumaran N. Duraiswamy; Clifton Kwang-Fu Shen; Hsian-Rong Tseng

Metastases are the most common cause of cancer-related death in patients with solid tumors.[1–4] A considerable body of evidence indicates that tumor cells are shed from a primary tumor mass at the earliest stages of malignant progression[5–7]. These ‘break-away’ circulating tumor cells (CTCs)[8–11] enter the blood stream and travel to different tissues of the body, as a critical route for cancer metastasis. The current gold standard for determining tumor status requires invasive biopsy and subsequent genetic and proteomic analysis of biopsy samples. Alternatively, CTC measurement and analysis can be regarded as a “liquid biopsy” of the tumor, providing insight into tumor biology in the critical window where intervention could actually make a difference. However, detection and characterization of CTCs has been technically challenging due to their extremely low number in the bloodstream. CTCs are often found in the blood of patients with metastatic cancer (only up to hundreds of cells/mL) whereas common blood cells exist in high numbers (>109 cells/mL). Over the past decade, a diverse suite of technologies[8, 12–17] have been evolving to meet the challenge of counting and isolating CTCs from patient blood samples. Many employ different enrichment mechanisms such as immunomagnetic separation based on capture agent-labeled magnetic beads,[8, 16] microfluidics-based technologies[12, 14, 17] that enhance cell-surface contacts, and microfilter devices[13] that isolate CTCs based on size difference. The sensitivity of these emerging technologies, which is critical to their clinical utility for detecting early cancer progression (e.g., tumor invasion of vascular systems), relies on the degree of enrichment of CTCs.


Science | 2010

Identification of a cell-of-origin for human prostate cancer

Andrew S. Goldstein; Jiaoti Huang; Changyong Guo; Isla P. Garraway; Owen N. Witte

Another Cell Culprit in Prostate Cancer A recent controversial hypothesis about the cellular origins of human cancer, the so-called “cancer stem cell hypothesis,” has fueled interest in identifying the specific cell types that give rise to common epithelial cancers. A single, well-defined cell of origin could, in principle, lead to more effective targeted therapies. Based on histological evidence and/or studies of mouse tumors, luminal cells are believed to be the cell of origin in prostate cancer. Now, using functional assays of cells derived from benign human prostate tissue, Goldstein et al. (p. 568) find that a different cell type, basal cells, can give rise in mice to prostate tumors that closely resemble human prostate tumors. Thus, the cellular origin of prostate cancer may be more complex than anticipated. A new experimental model identifies basal cells, rather than luminal cells, as the origin of prostate cancer. Luminal cells are believed to be the cells of origin for human prostate cancer, because the disease is characterized by luminal cell expansion and the absence of basal cells. Yet functional studies addressing the origin of human prostate cancer have not previously been reported because of a lack of relevant in vivo human models. Here we show that basal cells from primary benign human prostate tissue can initiate prostate cancer in immunodeficient mice. The cooperative effects of AKT, ERG, and androgen receptor in basal cells recapitulated the histological and molecular features of human prostate cancer, with loss of basal cells and expansion of luminal cells expressing prostate-specific antigen and alpha-methylacyl-CoA racemase. Our results demonstrate that histological characterization of cancers does not necessarily correlate with the cellular origins of the disease.


Cancer Cell | 2011

Cell Autonomous Role of PTEN in Regulating Castration-Resistant Prostate Cancer Growth

David J. Mulholland; Linh M. Tran; Yunfeng Li; Houjian Cai; Ashkan Morim; Shunyou Wang; Seema Plaisier; Isla P. Garraway; Jiaoti Huang; Thomas G. Graeber; Hong Wu

Alteration of the PTEN/PI3K pathway is associated with late-stage and castrate-resistant prostate cancer (CRPC). However, how PTEN loss is involved in CRPC development is not clear. Here, we show that castration-resistant growth is an intrinsic property of Pten null prostate cancer (CaP) cells, independent of cancer development stage. PTEN loss suppresses androgen-responsive gene expressions by modulating androgen receptor (AR) transcription factor activity. Conditional deletion of Ar in the epithelium promotes the proliferation of Pten null cancer cells, at least in part, by downregulating the androgen-responsive gene Fkbp5 and preventing PHLPP-mediated AKT inhibition. Our findings identify PI3K and AR pathway crosstalk as a mechanism of CRPC development, with potentially important implications for CaP etiology and therapy.


Cancer Research | 2012

Pten Loss and RAS/MAPK Activation Cooperate to Promote EMT and Metastasis Initiated from Prostate Cancer Stem/Progenitor Cells

David J. Mulholland; Naoko Kobayashi; Marcus Ruscetti; Allen Zhi; Linh M. Tran; Jiaoti Huang; Martin Gleave; Hong Wu

PTEN loss or PI3K/AKT signaling pathway activation correlates with human prostate cancer progression and metastasis. However, in preclinical murine models, deletion of Pten alone fails to mimic the significant metastatic burden that frequently accompanies the end stage of human disease. To identify additional pathway alterations that cooperate with PTEN loss in prostate cancer progression, we surveyed human prostate cancer tissue microarrays and found that the RAS/MAPK pathway is significantly elevated in both primary and metastatic lesions. In an attempt to model this event, we crossed conditional activatable K-ras(G12D/WT) mice with the prostate conditional Pten deletion model. Although RAS activation alone cannot initiate prostate cancer development, it significantly accelerated progression caused by PTEN loss, accompanied by epithelial-to-mesenchymal transition (EMT) and macrometastasis with 100% penetrance. A novel stem/progenitor subpopulation with mesenchymal characteristics was isolated from the compound mutant prostates, which was highly metastatic upon orthotopic transplantation. Importantly, inhibition of RAS/MAPK signaling by PD325901, a mitogen-activated protein (MAP)-extracellular signal-regulated (ER) kinase (MEK) inhibitor, significantly reduced the metastatic progression initiated from transplanted stem/progenitor cells. Collectively, our findings indicate that activation of RAS/MAPK signaling serves as a potentiating second hit to alteration of the PTEN/PI3K/AKT axis, and cotargeting both the pathways is highly effective in preventing the development of metastatic prostate cancers.


European Urology | 2014

Value of Targeted Prostate Biopsy Using Magnetic Resonance–Ultrasound Fusion in Men with Prior Negative Biopsy and Elevated Prostate-specific Antigen

Geoffrey A. Sonn; Edward F. Chang; Shyam Natarajan; Daniel Margolis; Malu Macairan; Patricia Lieu; Jiaoti Huang; Frederick J. Dorey; Robert E. Reiter; Leonard S. Marks

BACKGROUND Conventional biopsy fails to detect the presence of some prostate cancers (PCas). Men with a prior negative biopsy but persistently elevated prostate-specific antigen (PSA) pose a diagnostic dilemma, as some harbor elusive cancer. OBJECTIVE To determine whether use of magnetic resonance-ultrasound (MR-US) fusion biopsy results in improved detection of PCa compared to repeat conventional biopsy. DESIGN, SETTING, AND PARTICIPANTS In a consecutive-case series, 105 subjects with prior negative biopsy and elevated PSA values underwent multiparametric magnetic resonance imaging (MRI) and fusion biopsy in an outpatient setting. INTERVENTION Suspicious areas on multiparametric MRI were delineated and graded by a radiologist; MR-US fusion biopsy was performed by a urologist using the Artemis device; targeted and systematic biopsies were obtained regardless of MRI result. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Detection rates of all PCa and clinically significant PCa (Gleason ≥3+4 or Gleason 6 with maximal cancer core length ≥4 mm) were determined. The yield of targeted biopsy was compared to systematic biopsy. The ability of an MRI grading system to predict clinically significant cancer was investigated. Stepwise multivariate logistic regression analysis was performed to determine predictors of significant cancer on biopsy. RESULTS AND LIMITATIONS Fusion biopsy revealed PCa in 36 of 105 men (34%; 95% confidence interval [CI], 25-45). Seventy-two percent of men with PCa had clinically significant disease; 21 of 23 men (91%) with PCa on targeted biopsy had significant cancer compared to 15 of 28 (54%) with systematic biopsy. Degree of suspicion on MRI was the most powerful predictor of significant cancer on multivariate analysis. Twelve of 14 (86%) subjects with a highly suspicious MRI target were diagnosed with clinically significant cancer. CONCLUSIONS MR-US fusion biopsy provides improved detection of PCa in men with prior negative biopsies and elevated PSA values. Most cancers found were clinically significant.


Nature Medicine | 2010

Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance

Hiroshi Tanaka; Evelyn Kono; Chau P. Tran; Hideyo Miyazaki; Joyce Yamashiro; Tatsuya Shimomura; Ladan Fazli; Robert Wada; Jiaoti Huang; Robert L. Vessella; Jaibin An; Steven Horvath; Martin Gleave; Matthew Rettig; Zev A. Wainberg; Robert E. Reiter

The transition from androgen-dependent to castration-resistant prostate cancer (CRPC) is a lethal event of uncertain molecular etiology. Comparing gene expression in isogenic androgen-dependent and CRPC xenografts, we found a reproducible increase in N-cadherin expression, which was also elevated in primary and metastatic tumors of individuals with CRPC. Ectopic expression of N-cadherin in nonmetastatic, androgen-dependent prostate cancer models caused castration resistance, invasion and metastasis. Monoclonal antibodies against the ectodomain of N-cadherin reduced proliferation, adhesion and invasion of prostate cancer cells in vitro. In vivo, these antibodies slowed the growth of multiple established CRPC xenografts, blocked local invasion and metastasis and, at higher doses, led to complete regression. N-cadherin–specific antibodies markedly delayed the time to emergence of castration resistance, markedly affected tumor histology and angiogenesis, and reduced both AKT serine-threonine kinase activity and serum interleukin-8 (IL-8) secretion. These data indicate that N-cadherin is a major cause of both prostate cancer metastasis and castration resistance. Therapeutic targeting of this factor with monoclonal antibodies may have considerable clinical benefit.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Basal epithelial stem cells are efficient targets for prostate cancer initiation

Devon A. Lawson; Yang Zong; Sanaz Memarzadeh; Li Xin; Jiaoti Huang; Owen N. Witte

Prevailing theories suggest that luminal cells are the origin of prostate cancer because it is histologically defined by basal cell loss and malignant luminal cell expansion. We introduced a series of genetic alterations into prospectively identified populations of murine basal/stem and luminal cells in an in vivo prostate regeneration assay. Stromal induction of FGF signaling, increased expression of the ETS family transcription factor ERG1, and constitutive activation of PI3K signaling were evaluated. Combination of activated PI3K signaling and heightened androgen receptor signaling, which is associated with disease progression to androgen independence, was also performed. Even though luminal cells fail to respond, basal/stem cells demonstrate efficient capacity for cancer initiation and can produce luminal-like disease characteristic of human prostate cancer in multiple models. This finding provides evidence in support of basal epithelial stem cells as one target cell for prostate cancer initiation and demonstrates the propensity of primitive cells for tumorigenesis.


The Journal of Urology | 2013

Targeted Biopsy in the Detection of Prostate Cancer Using an Office Based Magnetic Resonance Ultrasound Fusion Device

Geoffrey A. Sonn; Shyam Natarajan; Daniel Margolis; Malu Macairan; Patricia Lieu; Jiaoti Huang; Frederick J. Dorey; Leonard S. Marks

PURPOSE Targeted biopsy of lesions identified on magnetic resonance imaging may enhance the detection of clinically relevant prostate cancers. We evaluated prostate cancer detection rates in 171 consecutive men using magnetic resonance ultrasound fusion prostate biopsy. MATERIALS AND METHODS Subjects underwent targeted biopsy for active surveillance (106) or persistently increased prostate specific antigen but negative prior conventional biopsy (65). Before biopsy, each man underwent multiparametric magnetic resonance imaging at 3.0 Tesla. Lesions on magnetic resonance imaging were outlined in 3 dimensions and assigned increasing cancer suspicion levels (image grade 1 to 5) by a uroradiologist. A biopsy tracking system was used to fuse the stored magnetic resonance imaging with real-time ultrasound, generating a 3-dimensional prostate model on the fly. Working from the 3-dimensional model, transrectal biopsy of target lesions and 12 systematic biopsies were performed with the patient under local anesthesia in the clinic. RESULTS A total of 171 subjects (median age 65 years) underwent targeted biopsy. At biopsy, median prostate specific antigen was 4.9 ng/ml and prostate volume was 48 cc. A targeted biopsy was 3 times more likely to identify cancer than a systematic biopsy (21% vs 7%). Prostate cancer was found in 53% of men, 38% of whom had Gleason grade 7 or greater cancer. Of the men with Gleason 7 or greater cancer 38% had disease detected only on targeted biopsies. Targeted biopsy findings correlated with level of suspicion on magnetic resonance imaging. Of 16 men 15 (94%) with an image grade 5 target (highest suspicion) had prostate cancer, including 7 with Gleason 7 or greater cancer. CONCLUSIONS Prostate lesions identified on magnetic resonance imaging can be accurately targeted using magnetic resonance ultrasound fusion biopsy by a urologist in clinic. Biopsy findings correlate with level of suspicion on magnetic resonance imaging.


Cell Stem Cell | 2012

The PSA−/lo Prostate Cancer Cell Population Harbors Self-Renewing Long-Term Tumor-Propagating Cells that Resist Castration

Jichao Qin; Xin Liu; Brian Laffin; Xin Chen; Grace Choy; Collene R. Jeter; Tammy Calhoun-Davis; Hangwen Li; Ganesh S. Palapattu; Shen Pang; Kevin Lin; Jiaoti Huang; Ivan Ivanov; Wei Li; Mahipal Suraneni; Dean G. Tang

Prostate cancer (PCa) is heterogeneous and contains both differentiated and undifferentiated tumor cells, but the relative functional contribution of these two cell populations remains unclear. Here we report distinct molecular, cellular, and tumor-propagating properties of PCa cells that express high (PSA(+)) and low (PSA(-/lo)) levels of the differentiation marker PSA. PSA(-/lo) PCa cells are quiescent and refractory to stresses including androgen deprivation, exhibit high clonogenic potential, and possess long-term tumor-propagating capacity. They preferentially express stem cell genes and can undergo asymmetric cell division to generate PSA(+) cells. Importantly, PSA(-/lo) PCa cells can initiate robust tumor development and resist androgen ablation in castrated hosts, and they harbor highly tumorigenic castration-resistant PCa cells that can be prospectively enriched using ALDH(+)CD44(+)α2β1(+) phenotype. In contrast, PSA(+) PCa cells possess more limited tumor-propagating capacity, undergo symmetric division, and are sensitive to castration. Altogether, our study suggests that PSA(-/lo) cells may represent a critical source of castration-resistant PCa cells.

Collaboration


Dive into the Jiaoti Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Owen N. Witte

University of California

View shared research outputs
Top Co-Authors

Avatar

Jorge L. Yao

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Patricia Lieu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Rettig

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge