Jiapeng Lin
Shihezi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiapeng Lin.
BioMed Research International | 2012
Liqin Wang; Jiapeng Lin; Juncheng Huang; Jing Wang; Yuncheng Zhao; Tong Chen
Sheep oocytes derived from the ovaries collected from the slaughterhouse are often used for research on in vitro embryo production, animal cloning, transgenesis, embryonic stem cells, and other embryo biotechnology aspects. Improving the in vitro culture efficiency of oocytes can provide more materials for similar studies. Generally, determination of oocyte quality is mostly based on the layers of cumulus cells and cytoplasm or cytoplasm uniformity and colors. This requires considerable experience to better identify oocyte quality because of the intense subjectivity involved (Gordon (2003), Madison et al. (1992) and De Loos et al. (1992)). BCB staining is a function of glucose-6-phosphate dehydrogenase (G6PD) activity, an enzyme synthesized in developing oocytes, which decreases in activity with maturation. Therefore, unstained oocytes (BCB−) are high in G6PD activity, while the less mature oocytes stains are deep blue (BCB+) due to insuffcient G6PD activity to decolorize the BCB dye.
Journal of Experimental Zoology | 2011
Yuncheng Zhao; Jiapeng Lin; Liqin Wang; Bo Chen; Chuan Zhou; Tong Chen; Meiying Guo; Sangang He; Ning Zhang; Chenxi Liu; Mingjun Liu; Juncheng Huang
Domestic animal embryonic stem (ES) cells would provide an invaluable research tool for genetic breeding and the production of transgenic animals. Unfortunately, authentic domestic animals ES cells have not been established despite progress made over more than two decades. Here, we show that ovine ES-like cells can be efficiently derived and propagated in a semi-defined medium that contains N2, B27, GSK3 inhibitor (CHIR99021), and basic fibroblast growth factor (bFGF). These ovine ES-like cells had a characteristic three-dimensional appearance, showed a bFGF dose-dependence, expressed specific markers such as alkaline phosphatase (AP), Oct-4, Sox2, Nanog and can be maintained for 30 passages. Moreover, these cells differentiated in vitro into neuronal cells, and formed teratomas containing a variety of different tissues including cartilage and neural tissue when injected into kidney capsules of severe combined immunodeficiency (SCID) mice. But the cell lines fail to contribute to embryonic development upon blastocyst transplantation. To our knowledge, this is the first experiment to use semi-defined medium without feeder-cells to derive ES-like cells from ovine blastocysts, and opens the door to deriving authentic ES cells from domesticated ungulates.
Biochemical and Biophysical Research Communications | 2013
Yongzhi Tian; Wenrong Li; Liqin Wang; Chenxi Liu; Jiapeng Lin; Xuemei Zhang; Ning Zhang; Sangang He; Juncheng Huang; Bin Jia; Mingjun Liu
A number of gene therapy applications and basic research would benefit from vectors expressing multiple genes. In this study, we constructed 2A peptide based tricistronic lentiviral vector and generated transgenic lambs by injecting lentivirus carrying the tricistronic vector into perivitelline space of zygotes. Of 7 lambs born, 2 lambs (#6 and #7) carried the transgene. However, no fluorescent proteins were identified in transgenic sheep. To investigate why the transgene was silenced in transgenic sheep, we analyzed the methylation status of transgene. The methylation level of CMV promoter was 76.25% in #6, and 64.7% in #7. In the coding region of three fluorescent protein genes, methylation levels were extremely high, with the average level of 98.3% in #6 and 98.4% in #7 respectively. Furthermore, the ratio of GFP(+) cells were increased significantly when the fibroblasts derived from the transgenic sheep were treated with 5-azaC and/ or TSA. Our results showed that 2A peptide based tricistronic construct was subjected to hypermethylation in transgenic sheep. Moreover, the silencing could be relieved by treating with methytransferase inhibitor and/or deacetylase inhibitor.
Scientific Reports | 2017
Xuemei Zhang; Wenrong Li; Chenxi Liu; Xinrong Peng; Jiapeng Lin; Sangang He; Xuejiao Li; Bing Han; Ning Zhang; Yangsheng Wu; Lei Chen; Liqin Wang; MaYila; Juncheng Huang; Mingjun Liu
Coat color is an important characteristic and economic trait in domestic sheep. Aiming at alteration of Chinese merino sheep coat color by genome manipulation, we disrupted sheep agouti signaling protein gene by CRISPR/Cas9. A total of seven indels were identified in 5 of 6 born lambs. Each targeted lamb happened at least two kinds of modifications, and targeted lambs with multiple modifications displayed variety of coat color patterns. Three lambs with 4 bp deletion showed badgerface with black body coat color in two lambs, and brown coat color with light ventral pigmentation in another one. The black-white spotted color was observed in two lambs with 2 bp deletion. Further analysis unraveled that modifications happened in one or more than two copies of ASIP gene, and moreover, the additional spontaneous mutations of D9 and/or D5 preceding the targeting modification could also involve the formation of coat color patterns. Taken together, the entanglement of ASIP modifications by CRISPR/Cas9, spontaneous D9/D5 mutations, and ASIP gene duplications contributed to the variety of coat color patterns in targeted lambs.
Theriogenology | 2017
Jiapeng Lin; Yangsheng Wu; Bing Han; Ying Chen; Liqin Wang; Xiaolin Li; Mingjun Liu; Juncheng Huang
The number of oocytes obtained from lambs after FSH treatment is far greater than those acquired from adult ewes. However, these oocytes typically have reduced viability in comparison with adult ewe oocytes. However, the molecular mechanisms of differences in viability between lamb and ewe oocytes remain unknown. In the present research, we applied iTRAQ coupled with LC-MS/MS proteomic analysis in order to investigate the proteomic expression profile of granulosa cells from lambs and ewes following stimulation with FSH. We detected 5649 proteins; 574 were differentially expressed between adults and juveniles. Based on Gene Ontology enrichment and KEGG pathway analysis, the majority of DEPs are participated in metabolic processes, ribosome and MAPK signaling pathways. Expression levels in ewes turned out to be lower than lambs. Protein interaction network analysis generated by STRING identified MAPK1, SMAD2, SMAD4, CDK1, FOS and ATM as the major findings among 54 significant differentially expressed of proteins. Quantitative real-time PCR analysis was applied to verify the proteomic analysis. These proteins which were identified in lambs may contribute to the reduction of oocyte quality compared to adults. The present research provides understanding of the molecular mechanism for follicle development in lambs.
FEBS Journal | 2017
Wenrong Li; Chenxi Liu; Xuemei Zhang; Lei Chen; Xinrong Peng; Sangang He; Jiapeng Lin; Bin Han; Liqin Wang; Juncheng Huang; Mingjun Liu
Fibroblast growth factor 5 (FGF5) regulates hair length in humans and a variety of other animals. To investigate whether FGF5 has similar effects in sheep, we used clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated 9 (Cas9) to generate loss‐of‐function mutations with the FGF5 gene in Chinese Merino sheep. A total of 16 lambs were identified with genetic mutations within the targeting locus: 13 lambs had biallelic modifications and three lambs had monoallelic modifications. Characterization of the modifications revealed that 13 were frameshift mutations that led to premature termination, whereas the other three were in‐frame deletions. Thus, CRISPR/Cas9 efficiently generated loss‐of‐function mutations in the sheep FGF5 gene. We then investigated the effect of loss of FGF5 function on wool traits in 12 lambs and found that wool staple length and stretched length of genetically modified (GM) yearling sheep were significantly longer compared with that of wild‐type (WT) control animals. The greasy fleece weight of GM yearling sheep was also significantly greater compared with that of WT sheep. Moreover, the mean fiber diameter in GM sheep showed no significant difference compared with WT sheep, suggesting that the increase in greasy fleece weight was likely attributed to the increase in wool length. The results of this study suggest that CRISPR/Cas9‐mediated loss of FGF5 activity could promote wool growth and, consequently, increase wool length and yield.
Asian-australasian Journal of Animal Sciences | 2016
Yangsheng Wu; Jiapeng Lin; Xiaolin Li; Bing Han; Liqin Wang; Mingjun Liu; Juncheng Huang
Objective Superstimulatory treatment of one-month-old lambs can achieve synchronous development of numerous growing follicles. However, these growing follicles cannot complete maturation and ovulation. Oocyte maturation and competence are acquired during follicular development, in which granulosa cells play an essential role. Methods In this study, we applied RNA sequencing to analyze and compare gene expression between prepubertal and adult superstimulated follicle granulosa cells in sheep. Results There were more than 300 genes that significantly differed in expression. Among these differently expressed genes, many extracellular matrix genes (EGF containing Fibulin Like Extracellular Matrix Protein 1, pentraxin 3, adrenomedullin, and osteopontin) were significantly down-regulated in the superstimulated follicles. Ingenuity pathway and gene ontology analyses revealed that processes of axonal guidance, cell proliferation and DNA replication were expressed at higher levels in the prepubertal follicles. Epidermal growth factor, T-Box protein 2 and beta-estradiol upstream regulator were predicted to be active in prepubertal follicles. By comparison, tumor protein P53 and let-7 were most active in adult follicles. Conclusion These results may contribute to a better understanding of the mechanisms governing the development of granulosa cells in the growing follicle in prepubertal sheep.
Gene | 2017
Wenrong Li; Sangang He; Chenxi Liu; Xuemei Zhang; Liqin Wang; Jiapeng Lin; Lei Chen; Bin Han; Juncheng Huang; Mingjun Liu
Fibroblast growth factor 5 (FGF5) has been recognized as an inhibitor to cease animal hair growth, while in contrary, FGF5 short alternative transcript (FGF5s) can induce hair growth by antagonizing FGF5 function. To investigate the role of FGF5s in wool growth in Chinese Merino sheep, we generated transgenic sheep of ectopic expression of FGF5s by injection of recombinant lentivirus into zygote. Totally 20 transgenic sheep were obtained and 12 were alive after birth. Characterization of the transgene revealed that the transgenic sheep showed variety of integrant, ranged from 2 to 11 copies of transgene. The ectopic expression of FGF5s was observed in all transgenic sheep. Further study on the effect of ectopic expression of FGF5s revealed that the wool length of transgenic sheep were significantly longer than that of non-transgenic control, with 9.17cm of transgenic lambs versus 7.58cm of control animals. Notably, besides the increase of wool length, the yearling greasy fleece weight was also concordantly greater than that of wild-type (p<0.01), with 3.22kg of transgenic sheep versus 2.17kg of control lambs (p<0.01) in average. Our results suggested that overexpression of FGF5s could stimulate wool growth and resulted in increase of wool length and greasy wool weight.
Archive | 2012
Juncheng Huang; Yuncheng Zhao; Liqin Wang; Jiapeng Lin; Tong Chen; Shibin Chen
Archive | 2012
Tong Chen; Juncheng Huang; Jiapeng Lin; Liqin Wang; Yuncheng Zhao