Jiaqing He
University of Science and Technology, Sana'a
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiaqing He.
Nature | 2012
Kanishka Biswas; Jiaqing He; Ivan D. Blum; Chun I. Wu; Timothy P. Hogan; David N. Seidman; Vinayak P. Dravid; Mercouri G. Kanatzidis
With about two-thirds of all used energy being lost as waste heat, there is a compelling need for high-performance thermoelectric materials that can directly and reversibly convert heat to electrical energy. However, the practical realization of thermoelectric materials is limited by their hitherto low figure of merit, ZT, which governs the Carnot efficiency according to the second law of thermodynamics. The recent successful strategy of nanostructuring to reduce thermal conductivity has achieved record-high ZT values in the range 1.5–1.8 at 750–900 kelvin, but still falls short of the generally desired threshold value of 2. Nanostructures in bulk thermoelectrics allow effective phonon scattering of a significant portion of the phonon spectrum, but phonons with long mean free paths remain largely unaffected. Here we show that heat-carrying phonons with long mean free paths can be scattered by controlling and fine-tuning the mesoscale architecture of nanostructured thermoelectric materials. Thus, by considering sources of scattering on all relevant length scales in a hierarchical fashion—from atomic-scale lattice disorder and nanoscale endotaxial precipitates to mesoscale grain boundaries—we achieve the maximum reduction in lattice thermal conductivity and a large enhancement in the thermoelectric performance of PbTe. By taking such a panoscopic approach to the scattering of heat-carrying phonons across integrated length scales, we go beyond nanostructuring and demonstrate a ZT value of ∼2.2 at 915 kelvin in p-type PbTe endotaxially nanostructured with SrTe at a concentration of 4 mole per cent and mesostructured with powder processing and spark plasma sintering. This increase in ZT beyond the threshold of 2 highlights the role of, and need for, multiscale hierarchical architecture in controlling phonon scattering in bulk thermoelectrics, and offers a realistic prospect of the recovery of a significant portion of waste heat.
Nature | 2012
In Chung; Byunghong Lee; Jiaqing He; R. P. H. Chang; Mercouri G. Kanatzidis
Dye-sensitized solar cells based on titanium dioxide (TiO2) are promising low-cost alternatives to conventional solid-state photovoltaic devices based on materials such as Si, CdTe and CuIn1−xGaxSe2 (refs 1, 2). Despite offering relatively high conversion efficiencies for solar energy, typical dye-sensitized solar cells suffer from durability problems that result from their use of organic liquid electrolytes containing the iodide/tri-iodide redox couple, which causes serious problems such as electrode corrosion and electrolyte leakage. Replacements for iodine-based liquid electrolytes have been extensively studied, but the efficiencies of the resulting devices remain low. Here we show that the solution-processable p-type direct bandgap semiconductor CsSnI3 can be used for hole conduction in lieu of a liquid electrolyte. The resulting solid-state dye-sensitized solar cells consist of CsSnI2.95F0.05 doped with SnF2, nanoporous TiO2 and the dye N719, and show conversion efficiencies of up to 10.2 per cent (8.51 per cent with a mask). With a bandgap of 1.3 electronvolts, CsSnI3 enhances visible light absorption on the red side of the spectrum to outperform the typical dye-sensitized solar cells in this spectral region.
Nature Chemistry | 2011
Kanishka Biswas; Jiaqing He; Qichun Zhang; Guoyu Wang; Ctirad Uher; Vinayak P. Dravid; Mercouri G. Kanatzidis
Thermoelectric materials can directly generate electrical power from waste heat but the challenge is in designing efficient, stable and inexpensive systems. Nanostructuring in bulk materials dramatically reduces the thermal conductivity but simultaneously increases the charge carrier scattering, which has a detrimental effect on the carrier mobility. We have experimentally achieved concurrent phonon blocking and charge transmitting via the endotaxial placement of nanocrystals in a thermoelectric material host. Endotaxially arranged SrTe nanocrystals at concentrations as low as 2% were incorporated in a PbTe matrix doped with Na(2)Te. This effectively inhibits the heat flow in the system but does not affect the hole mobility, allowing a large power factor to be achieved. The crystallographic alignment of SrTe and PbTe lattices decouples phonon and electron transport and this allows the system to reach a thermoelectric figure of merit of 1.7 at ~800 K.
Science | 2016
Li-Dong Zhao; Gangjian Tan; Shiqiang Hao; Jiaqing He; Yanling Pei; Hang Chi; Heng Wang; Shengkai Gong; Huibin Xu; Vinayak P. Dravid; Ctirad Uher; G. Jeffrey Snyder; C. Wolverton; Mercouri G. Kanatzidis
Heat conversion gets a power boost Thermoelectric materials convert waste heat into electricity, but often achieve high conversion efficiencies only at high temperatures. Zhao et al. tackle this problem by introducing small amounts of sodium to the thermoelectric SnSe (see the Perspective by Behnia). This boosts the power factor, allowing the material to generate more energy while maintaining good conversion efficiency. The effect holds across a wide temperature range, which is attractive for developing new applications. Science, this issue p. 141; see also p. 124 A thermoelectric derived by sodium doping of tin selenide has a high power factor and conversion efficiency over a wide temperature range. [Also see Perspective by Behnia] Thermoelectric technology, harvesting electric power directly from heat, is a promising environmentally friendly means of energy savings and power generation. The thermoelectric efficiency is determined by the device dimensionless figure of merit ZTdev, and optimizing this efficiency requires maximizing ZT values over a broad temperature range. Here, we report a record high ZTdev ∼1.34, with ZT ranging from 0.7 to 2.0 at 300 to 773 kelvin, realized in hole-doped tin selenide (SnSe) crystals. The exceptional performance arises from the ultrahigh power factor, which comes from a high electrical conductivity and a strongly enhanced Seebeck coefficient enabled by the contribution of multiple electronic valence bands present in SnSe. SnSe is a robust thermoelectric candidate for energy conversion applications in the low and moderate temperature range.
Journal of the American Chemical Society | 2011
Li-Dong Zhao; Shih Han Lo; Jiaqing He; Hao Li; Kanishka Biswas; John Androulakis; Chun I. Wu; Timothy P. Hogan; Duck Young Chung; Vinayak P. Dravid; Mercouri G. Kanatzidis
Lead sulfide, a compound consisting of elements with high natural abundance, can be converted into an excellent thermoelectric material. We report extensive doping studies, which show that the power factor maximum for pure n-type PbS can be raised substantially to ~12 μW cm(-1) K(-2) at >723 K using 1.0 mol % PbCl(2) as the electron donor dopant. We also report that the lattice thermal conductivity of PbS can be greatly reduced by adding selected metal sulfide phases. The thermal conductivity at 723 K can be reduced by ~50%, 52%, 30%, and 42% through introduction of up to 5.0 mol % Bi(2)S(3), Sb(2)S(3), SrS, and CaS, respectively. These phases form as nanoscale precipitates in the PbS matrix, as confirmed by transmission electron microscopy (TEM), and the experimental results show that they cause huge phonon scattering. As a consequence of this nanostructuring, ZT values as high as 0.8 and 0.78 at 723 K can be obtained for nominal bulk PbS material. When processed with spark plasma sintering, PbS samples with 1.0 mol % Bi(2)S(3) dispersion phase and doped with 1.0 mol % PbCl(2) show even lower levels of lattice thermal conductivity and further enhanced ZT values of 1.1 at 923 K. The promising thermoelectric properties promote PbS as a robust alternative to PbTe and other thermoelectric materials.
Journal of the American Chemical Society | 2011
Steven N. Girard; Jiaqing He; Xiaoyuan Zhou; Daniel P. Shoemaker; Christopher M. Jaworski; Ctirad Uher; Vinayak P. Dravid; Joseph P. Heremans; Mercouri G. Kanatzidis
Thermoelectric heat-to-power generation is an attractive option for robust and environmentally friendly renewable energy production. Historically, the performance of thermoelectric materials has been limited by low efficiencies, related to the thermoelectric figure-of-merit ZT. Nanostructuring thermoelectric materials have shown to enhance ZT primarily via increasing phonon scattering, beneficially reducing lattice thermal conductivity. Conversely, density-of-states (DOS) engineering has also enhanced electronic transport properties. However, successfully joining the two approaches has proved elusive. Herein, we report a thermoelectric materials system whereby we can control both nanostructure formations to effectively reduce thermal conductivity, while concurrently modifying the electronic structure to significantly enhance thermoelectric power factor. We report that the thermoelectric system PbTe-PbS 12% doped with 2% Na produces shape-controlled cubic PbS nanostructures, which help reduce lattice thermal conductivity, while altering the solubility of PbS within the PbTe matrix beneficially modifies the DOS that allow for enhancements in thermoelectric power factor. These concomitant and synergistic effects result in a maximum ZT for 2% Na-doped PbTe-PbS 12% of 1.8 at 800 K.
Nature | 2005
Nieng Yan; Jijie Chai; Eui Seung Lee; Lichuan Gu; Qun Liu; Jiaqing He; Jia-Wei Wu; David Kokel; Huilin Li; Quan Hao; Ding Xue; Yigong Shi
Interplay among four genes—egl-1, ced-9, ced-4 and ced-3—controls the onset of programmed cell death in the nematode Caenorhabditis elegans. Activation of the cell-killing protease CED-3 requires CED-4. However, CED-4 is constitutively inhibited by CED-9 until its release by EGL-1. Here we report the crystal structure of the CED-4–CED-9 complex at 2.6 Å resolution, and a complete reconstitution of the CED-3 activation pathway using homogeneous proteins of CED-4, CED-9 and EGL-1. One molecule of CED-9 binds to an asymmetric dimer of CED-4, but specifically recognizes only one of the two CED-4 molecules. This specific interaction prevents CED-4 from activating CED-3. EGL-1 binding induces pronounced conformational changes in CED-9 that result in the dissociation of the CED-4 dimer from CED-9. The released CED-4 dimer further dimerizes to form a tetramer, which facilitates the autoactivation of CED-3. Together, our studies provide important insights into the regulation of cell death activation in C. elegans.
Energy and Environmental Science | 2014
Li-Dong Zhao; Jiaqing He; David Berardan; Yuanhua Lin; Jing-Feng Li; Ce-Wen Nan; Nita Dragoe
BiCuSeO oxyselenides have recently acquired ever-increasing attention and have been extensively studied as very promising thermoelectric materials. The ZT of the BiCuSeO system was significantly increased from 0.5 to 1.4 in the past three years, which indicates that BiCuSeO oxyselenides are robust candidates for energy conversion applications. In this review, we first discuss and summarize the crystal structures, microstructures, electronic structures and physical/chemical properties of BiCuSeO oxyselenides. Then, the approaches that successfully enhanced the thermoelectric performances in the BiCuSeO system are outlined, which include increasing carrier concentration, optimizing Cu vacancies, a simple and facile ball milling method, multifunctional Pb doping, band gap tuning, and increasing carrier mobility through texturing. Theoretical calculations to predict a maximum ZT in the BiCuSeO system are also described. Finally, a discussion of future possible strategies is proposed to aim at further enhancing the thermoelectric figure of merit of these materials.
Journal of the American Chemical Society | 2011
Simon Johnsen; Jiaqing He; John Androulakis; Vinayak P. Dravid; Iliya Todorov; Duck Young Chung; Mercouri G. Kanatzidis
In situ nanostructuring in bulk thermoelectric materials through thermo-dynamic phase segregation has established itself as an effective paradigm for optimizing the performance of thermoelectric materials. In bulk PbTe small compositional variations create coherent and semicoherent nanometer sized precipitates embedded in a PbTe matrix, where they can impede phonon propagation at little or no expense to the electronic properties. In this paper the nanostructuring paradigm is for the first time extended to a bulk PbS based system, which despite obvious advantages of price and abundancy, so far has been largely disregarded in thermoelectric research due to inferior room temperature thermoelectric properties relative to the pristine fellow chalcogenides, PbSe and PbTe. Herein we report on the synthesis, microstructural morphology and thermoelectric properties of two phase (PbS)(1-x)(PbTe)(x)x = 0-0.16 samples. We have found that the addition of only a few percent PbTe to PbS results in a highly nanostructured material, where PbTe precipitates are coherently and semicoherently embedded in a PbS matrix. The present (PbS)(1-x)(PbTe)(x) nanostructured samples show substantial decreases in lattice thermal conductivity relative to pristine PbS, while the electronic properties are left largely unaltered. This in turn leads to a marked increase in the thermoelectric figure of merit. This study underlines the efficiency of the nanostructuring approach and strongly supports its generality and applicability to other material systems. We demonstrate that these PbS-based materials, which are made primarily from abundant Pb and S, outperform optimally n-type doped pristine PbTe above 770 K.
Nature Communications | 2014
Haijun Wu; Li-Dong Zhao; Fengshan Zheng; Di Wu; Yanling Pei; X. Tong; Mercouri G. Kanatzidis; Jiaqing He
Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. The efficiency of thermoelectric materials depends directly on the average ZT (dimensionless figure of merit) over a certain temperature range, which historically has been challenging to increase. Here we report that 2.5% K-doped PbTe0.7S0.3 achieves a ZT of >2 for a very wide temperature range from 673 to 923 K and has a record high average ZT of 1.56 (corresponding to a theoretical energy conversion efficiency of ~20.7% at the temperature gradient from 300 to 900 K). The PbTe0.7S0.3 composition shows spinodal decomposition with large PbTe-rich and PbS-rich regions where each region exhibits dissimilar types of nanostructures. Such high average ZT is obtained by synergistically optimized electrical- and thermal-transport properties via carrier concentration tuning, band structure engineering and hierarchical architecturing, and highlights a realistic prospect of wide applications of thermoelectrics.