Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiasheng Wu is active.

Publication


Featured researches published by Jiasheng Wu.


PLOS ONE | 2014

Salicylic Acid Alleviates the Adverse Effects of Salt Stress in Torreya grandis cv. Merrillii Seedlings by Activating Photosynthesis and Enhancing Antioxidant Systems

Tingting Li; Yuanyuan Hu; Xuhua Du; Hui Tang; Chaohua Shen; Jiasheng Wu

Background Salt stress is a major factor limiting plant growth and productivity. Salicylic acid (SA) has been shown to ameliorate the adverse effects of environmental stress on plants. To investigate the protective role of SA in ameliorating salt stress on Torreya grandis (T. grandis) trees, a pot experiment was conducted to analyze the biomass, relative water content (RWC), chlorophyll content, net photosynthesis (Pn), gas exchange parameters, relative leakage conductivity (REC), malondialdehyde (MDA) content, and activities of superoxide dismutase (SOD) and peroxidase (POD) of T. grandis under 0.2% and 0.4% NaCl conditions with and without SA. Methodology/Principal Findings The exposure of T. grandis seedlings to salt conditions resulted in reduced growth rates, which were associated with decreases in RWC and Pn and increases in REC and MDA content. The foliar application of SA effectively increased the chlorophyll (chl (a+b)) content, RWC, net CO2 assimilation rates (Pn), and proline content, enhanced the activities of SOD, CAT and POD, and minimized the increases in the REC and MDA content. These changes increased the capacity of T. grandis in acclimating to salt stress and thus increased the shoot and root dry matter. However, when the plants were under 0% and 0.2% NaCl stress, the dry mass of the shoots and roots did not differ significantly between SA-treated plants and control plants. Conclusions SA induced the salt tolerance and increased the biomass of T. grandis cv. by enhancing the chlorophyll content and activity of antioxidative enzymes, activating the photosynthetic process, and alleviating membrane injury. A better understanding about the effect of salt stress in T. grandis is vital, in order gain knowledge over expanding the plantations to various regions and also for the recovery of T. grandis species in the future.


Journal of Plant Growth Regulation | 2017

Effect of Differential Light Quality on Morphology, Photosynthesis, and Antioxidant Enzyme Activity in Camptotheca acuminata Seedlings

Weiwu Yu; Yang Liu; Lili Song; Douglass F. Jacobs; Xuhua Du; Yeqing Ying; Qingsong Shao; Jiasheng Wu

Light quality is an important environmental factor for plant growth and development. In this study, the effects of light quality (white, blue, yellow, and red light) on plant growth, photosynthesis, and radical oxygen species production and scavenging were investigated, in Camptotheca acuminata (C. acuminata) seedlings, by means of measuring growth parameters, photosynthetic pigments, gas exchange, and chlorophyll fluorescence, as well as stomatal structure and density, chloroplast ultrastructure, and ROS contents and antioxidant activities. Compared with white light, red light significantly increased seedling height, shoot, and total plant biomass, and promoted the highest photosynthetic capacity, electron transport, and photochemical efficiency. Red light also helped facilitate leaf development, indicated by higher total and specific leaf area, as well as decreased malondialdehyde content and relative electrolyte conductivity and contents of superoxide anion production rate and peroxide. In contrast, blue and yellow light significantly reduced plant growth, and increased activities of superoxidase dismutase, peroxidase, and catalase. Furthermore, red light promoted chloroplast development, which enhanced photosynthetic efficiency. These results suggest that red light could improve plant growth in C. acuminata seedlings through activating photosynthetic processes, reducing ROS accumulation, and maintaining chloroplast structure.


Journal of Agricultural and Food Chemistry | 2016

Hypobaric Treatment Effects on Chilling Injury, Mitochondrial Dysfunction, and the Ascorbate–Glutathione (AsA-GSH) Cycle in Postharvest Peach Fruit

Lili Song; Jinhua Wang; Mohammad Shafi; Yuan Liu; Jie Wang; Jiasheng Wu; Ai-Min Wu

In this study, hypobaric treatment effects were investigated on chilling injury, mitochondrial dysfunction, and the ascorbate-glutathione (AsA-GSH) cycle in peach fruit stored at 0 °C. Internal browning of peaches was dramatically reduced by applying 10-20 kPa pressure. Hypobaric treatment markedly inhibited membrane fluidity increase, whereas it kept mitochondrial permeability transition pore (MPTP) concentration and cytochrome C oxidase (CCO) and succinic dehydrogenase (SDH) activity relatively high in mitochondria. Similarly, 10-20 kPa pressure treatment reduced the level of decrease observed in AsA and GSH concentrations, while it enhanced ascorbate peroxidase (APX), glutathione reductase (GR), and monodehydroascorbate reductase (MDHAR) activities related to the AsA-GSH cycle. Furthermore, comparative transcriptomic analysis showed that differentially expressed genes (DEGs) associated with the metabolism of glutathione, ascorbate, and aldarate were up-regulated in peaches treated with 10-20 kPa for 30 days at 0 °C. Genes encoding GR, MDHAR, and APX were identified and exhibited higher expression in fruits treated with low pressure than in fruits treated with normal atmospheric pressure. Our findings indicate that the alleviation of chilling injury by hypobaric treatment was associated with preventing mitochondrial dysfunction and triggering the AsA-GSH cycle by the transcriptional up-regulation of related enzymes.


Trees-structure and Function | 2014

Salicylic acid induces physiological and biochemical changes in Torreya grandis cv. Merrillii seedlings under drought stress

Chaohua Shen; Yuanyuan Hu; Xuhua Du; Tingting Li; Hui Tang; Jiasheng Wu

Key messageSA treatment effectively ameliorated the negative effect of moderate drought stress onT. grandisSeedlings through increasing the water content, Pn, proline content, antioxidant enzymes activity and reducing MDA.AbstractWater availability is one of the most critical factors that limits the growth and development of plants. Salicylic acid (SA) is an important signal molecule that modulates plant responses to abiotic stress. To elucidate the regulating mechanism of exogenous SA on Torreya grandis cv. Merrillii under different water stresses, a pot experiment was conducted in a greenhouse. Exposure of T. grandis seedlings to drought conditions resulted in reduced growth rate that was associated with a decline in water content and CO2 assimilation. Foliar application of SA effectively increased the water content, net CO2 assimilation rate, proline content and antioxidant enzymes activity in the plants, which helped T. grandis to acclimate to moderate drought stress and increase the shoot dry matter. However, when the plants were under severe drought stress, the relative water content and CO2 assimilation in the SA-treated plants were significantly lower than those in the control plants. Therefore, our results indicated that SA can effectively ameliorate the negative effect of moderate drought stress on T. grandis seedling growth.


Frontiers in Plant Science | 2016

Magnesium Alleviates Adverse Effects of Lead on Growth, Photosynthesis, and Ultrastructural Alterations of Torreya grandis Seedlings

Jie Shen; Lili Song; Karin Müller; Yuanyuan Hu; Yang Song; Weiwu Yu; Hailong Wang; Jiasheng Wu

Magnesium (Mg2+) has been shown to reduce the physiological and biochemical stress in plants caused by heavy metals. To date our understanding of how Mg2+ ameliorates the adverse effects of heavy metals in plants is scarce. The potential effect of Mg2+ on lead (Pb2+) toxicity in plants has not yet been studied. This study was designed to clarify the mechanism of Mg2+-induced alleviation of lead (Pb2+) toxicity. Torreya grandis (T. grandis) seedlings were grown in substrate contaminated with 0, 700 and 1400 mg Pb2+ per kg-1 and with or without the addition of 1040 mg kg-1 Mg2+. Growth parameters, concentrations of Pb2+ and Mg2+ in the plants’ shoots and roots, photosynthetic pigment, gas exchange parameters, the maximum quantum efficiency (Fv/Fm), root oxidative activity, ultrastructure of chloroplasts and root growth were determined to analyze the effect of different Pb2+ concentrations on the seedlings as well as the potential ameliorating effect of Mg2+ on the Pb2+ induced toxicity. All measurements were tested by a one-way ANOVA for the effects of treatments. The growth of T. grandis seedlings cultivated in soils treated with 1400 mg kg-1 Pb2+ was significantly reduced compared with that of plants cultivated in soils treated with 0 or 700 mg kg-1 Pb2+. The addition of 1040 mg kg-1 Mg2+ improved the growth of the Pb2+-stressed seedlings, which was accompanied by increased chlorophyll content, the net photosynthetic rate and Fv/Fm, and enhanced chloroplasts development. In addition, the application of Mg2+ induced plants to accumulate five times higher concentrations of Pb2+ in the roots and to absorb and translocate four times higher concentrations of Mg2+ to the shoots than those without Mg2+ application. Furthermore, Mg2+ addition increased root growth and oxidative activity, and protected the root ultrastructure. To the best of our knowledge, our study is the first report on the mechanism of Mg2+-induced alleviation of Pb2+ toxicity. The generated results may have important implications for understanding the physiological interactions between heavy metals and plants, and for successful management of T. grandis plantations grown on soils contaminated with Pb2+.


Frontiers in Plant Science | 2015

Growth, physiological, and biochemical responses of Camptotheca acuminata seedlings to different light environments

Xiaohua Ma; Lili Song; Weiwu Yu; Yuanyuan Hu; Yang Liu; Jiasheng Wu; Yeqing Ying

Light intensity critically affects plant growth. Camptotheca acuminata is a light-demanding species, but its optimum light intensity is not known. To investigate the response of C. acuminata seedlings to different light intensities, specifically 100% irradiance (PAR, 1500 ± 30 μmol m−2 s−1), 75% irradiance, 50% irradiance, and 25% irradiance, a pot experiment was conducted to analyze growth parameters, photosynthetic pigments, gas exchange, chlorophyll fluorescence, stomatal structure and density, chloroplast ultrastructure, ROS concentrations, and antioxidant activities. Plants grown under 75% irradiance had significantly higher total biomass, seedling height, ground diameter, photosynthetic capacity, photochemical efficiency, and photochemical quenching than those grown under 100%, 25%, and 50% irradiance. Malondialdehyde (MDA) content, relative electrolyte conductivity (REC), superoxide anion (O.−2) production, and peroxide (H2O2) content were lower under 75% irradiance. The less pronounced plant growth under 100% and 25% irradiance was associated with a decline in photosynthetic capacity and photochemical efficiency, with increases in the activity of specific antioxidants (i.e., superoxidase dismutase, peroxidase, and catalase), and with increases in MDA content and REC. Lower levels of irradiance were associated with significantly higher concentrations of chlorophyll (Chl) a and b and lower Chla/b ratios. Stomatal development was most pronounced under 75% irradiance. Modification of chloroplast development was found to be an important mechanism of responding to different light intensities in C. acuminata. The results indicated that 75% irradiance is optimal for the growth of C. acuminata seedlings. The improvement in C. acuminata growth under 75% irradiance was attributable to increased photosynthesis, less accumulation of ROS, and the maintenance of the stomatal and chloroplast structure.


Photosynthetica | 2017

Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress

Yuanyuan Hu; Weiwu Yu; T. Liu; M. Shafi; Lili Song; Xuhua Du; X. Huang; Y. Yue; Jiasheng Wu

Salt stress is one of the most critical factors hindering the growth and development of plants. Paclobutrazol (PBZ) is widely used to minimize this problem in agriculture because it can induce salt stress tolerance in plants. This study investigated the effects of PBZ on salt tolerance of seedlings from two Chinese bayberry cultivars (i.e., Wangdao and Shenhong). Plants were treated with three salt concentrations (0, 0.2, and 0.4 % NaCl) and two PBZ concentrations (0 and 2.0 μmol L–1). Application of PBZ increased a relative water content, proline content, chlorophyll (a+b) content, and antioxidant enzyme activities in both cultivars, resulting in a better acclimation to salt stress and an increase in dry matter production. We concluded that PBZ ameliorated the negative effects of salt stress in Chinese bayberry seedlings.


Frontiers in Plant Science | 2018

Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

Yuanyuan Hu; Yongling Zhang; Weiwu Yu; Heikki Hänninen; Lili Song; Xuhua Du; Rui Zhang; Jiasheng Wu

Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars.


Industrial Crops and Products | 2015

Light quality modifies camptothecin production and gene expression of biosynthesis in Camptotheca acuminata Decne seedlings

Yang Liu; Lili Song; Weiwu Yu; Yuanyuan Hu; Xiaohua Ma; Jiasheng Wu; Yeqing Ying


Postharvest Biology and Technology | 2015

Optimal hypobaric treatment delays ripening of honey peach fruit via increasing endogenous energy status and enhancing antioxidant defence systems during storage

Jinhua Wang; Yanli You; Wenxuan Chen; Qingqing Xu; Jie Wang; Yingkun Liu; Lili Song; Jiasheng Wu

Collaboration


Dive into the Jiasheng Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge