Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiaur R. Gayen is active.

Publication


Featured researches published by Jiaur R. Gayen.


Nature Medicine | 2011

Brain PPAR-γ promotes obesity and is required for the insulin–sensitizing effect of thiazolidinediones

Min Lu; David A. Sarruf; Saswata Talukdar; Shweta Sharma; Pingping Li; Gautam Bandyopadhyay; Sarah Nalbandian; WuQiang Fan; Jiaur R. Gayen; Sushil K. Mahata; Nicholas J. G. Webster; Michael J. Schwartz; Jerrold M. Olefsky

In adipose tissue, muscle, liver and macrophages, signaling by the nuclear receptor peroxisome proliferator–activated receptor-γ (PPAR-γ) is a determinant of insulin sensitivity and this receptor mediates the insulin–sensitizing effects of thiazolidinediones (TZDs). As PPAR-γ is also expressed in neurons, we generated mice with neuron-specific Pparg knockout (Pparg brain knockout (BKO)) to determine whether neuronal PPAR-γ signaling contributes to either weight gain or insulin sensitivity. During high-fat diet (HFD) feeding, food intake was reduced and energy expenditure increased in Pparg-BKO mice compared to Ppargf/f mice, resulting in reduced weight gain. Pparg-BKO mice also responded better to leptin administration than Ppargf/f mice. When treated with the TZD rosiglitazone, Pparg-BKO mice were resistant to rosiglitazone-induced hyperphagia and weight gain and, relative to rosiglitazone-treated Ppargf/f mice, experienced only a marginal improvement in glucose metabolism. Hyperinsulinemic euglycemic clamp studies showed that the increase in hepatic insulin sensitivity induced by rosiglitazone treatment during HFD feeding was completely abolished in Pparg-BKO mice, an effect associated with the failure of rosiglitazone to improve liver insulin receptor signal transduction. We conclude that excess weight gain induced by HFD feeding depends in part on the effect of neuronal PPAR-γ signaling to limit thermogenesis and increase food intake. Neuronal PPAR-γ signaling is also required for the hepatic insulin sensitizing effects of TZDs.


Circulation | 2007

Catecholamine release-inhibitory peptide catestatin (chromogranin A352-372): Naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension

Fangwen Rao; Gen Wen; Jiaur R. Gayen; Madhusudan Das; Sucheta M. Vaingankar; Brinda K. Rana; Manjula Mahata; Brian Kennedy; Rany M. Salem; Mats Stridsberg; Kenneth Abel; Douglas W. Smith; Eleazar Eskin; Nicholas J. Schork; Bruce A. Hamilton; Michael G. Ziegler; Sushil K. Mahata; Daniel T. O'Connor

Background— Chromogranin A, coreleased with catecholamines by exocytosis, is cleaved to the catecholamine release–inhibitory fragment catestatin. We identified a natural nonsynonymous variant of catestatin, Gly364Ser, that alters human autonomic function and blood pressure. Methods and Results— Gly364Ser heterozygotes and controls underwent physiological and biochemical phenotyping, including catecholamine production, chromogranin A precursor, and its catestatin product. Case-control studies replicated effects of the gene on blood pressure in the population. Gly364Ser displayed diminished inhibition of catecholamine secretion from cultured neurons. Gly/Ser heterozygotes displayed increased baroreceptor slope during upward deflections (by ≈47%) and downward deflections (by ≈44%), increased cardiac parasympathetic index (by ≈2.4-fold), and decreased cardiac sympathetic index (by ≈26%). Renal norepinephrine excretion was diminished by ≈26% and epinephrine excretion by ≈34% in Gly/Ser heterozygotes. The coalescent dated emergence of the variant to ≈70 000 years ago. Gly364Ser was in linkage disequilibrium with 1 major Chromogranin A promoter haplotype, although promoter haplotypes did not predict autonomic phenotypes. The 364Ser variant was associated with lower diastolic blood pressure in 2 independent/confirmatory groups of patients with hypertension; genotype groups differed by ≈5 to 6 mm Hg, and the polymorphism accounted for ≈1.8% of population diastolic blood pressure variance, although a significant gene-by-sex interaction existed, with an enhanced effect in men. Conclusions— The catestatin Gly364Ser variant causes profound changes in human autonomic activity, both parasympathetic and sympathetic, and seems to reduce risk of developing hypertension, especially in men. A model for catestatin action in the baroreceptor center of the nucleus of the tractus solitarius accounts for these actions.


Journal of Biological Chemistry | 2009

A Novel Pathway of Insulin Sensitivity in Chromogranin A Null Mice A CRUCIAL ROLE FOR PANCREASTATIN IN GLUCOSE HOMEOSTASIS

Jiaur R. Gayen; Maziyar Saberi; Simon Schenk; Nilima Biswas; Sucheta M. Vaingankar; Wai W. Cheung; Sonia M. Najjar; Daniel T. O'Connor; Gautam Bandyopadhyay; Sushil K. Mahata

Chromogranin A (CHGA/Chga), a proprotein, widely distributed in endocrine and neuroendocrine tissues (not expressed in muscle, liver, and adipose tissues), generates at least four bioactive peptides. One of those peptides, pancreastatin (PST), has been reported to interfere with insulin action. We generated a Chga knock-out (KO) mouse by the targeted deletion of the Chga gene in neuroendocrine tissues. KO mice displayed hypertension, higher plasma catecholamine, and adipokine levels and lower IL-6 and lipid levels compared with wild type mice. Liver glycogen content was elevated, but the nitric oxide (NO) level was diminished. Glucose, insulin, and pyruvate tolerance tests and hyperinsulinemic-euglycemic clamp studies established increased insulin sensitivity in liver but decreased glucose disposal in muscle. Despite higher catecholamine and ketone body levels and muscle insulin resistance, KO mice maintained euglycemia due to increased liver insulin sensitivity. Suppressed mRNA abundance of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase) in KO mice further support this conclusion. PST administration in KO mice stimulated phosphoenolpyruvate carboxykinase and G6Pase mRNA abundance and raised the blood glucose level. In liver cells transfected with G6Pase promoter, PST caused transcriptional activation in a protein kinase C (PKC)- and NO synthase-dependent manner. Thus, PST action may be mediated by suppressing IRS1/2-phosphatidylinositol 3-kinase-Akt-FOXO-1 signaling and insulin-induced maturation of SREBP1c by PKC and a high level of NO. The combined effects of conventional PKC and endothelial NO synthase activation by PST can suppress insulin signaling. The rise in blood PST level with age and in diabetes suggests that PST is a negative regulator of insulin sensitivity and glucose homeostasis.


Endocrinology | 2009

Cathepsin L Colocalizes with Chromogranin A in Chromaffin Vesicles to Generate Active Peptides

Nilima Biswas; Juan L. Rodriguez-Flores; Maïté Courel; Jiaur R. Gayen; Sucheta M. Vaingankar; Manjula Mahata; Justin W. Torpey; Laurent Taupenot; Daniel T. O'Connor; Sushil K. Mahata

Chromogranin A (CgA), the major soluble protein in chromaffin granules, is proteolytically processed to generate biologically active peptides including the catecholamine release inhibitory peptide catestatin. Here we sought to determine whether cysteine protease cathepsin L (CTSL), a novel enzyme for proteolytic processing of neuropeptides, acts like the well-established serine proteases [prohormone convertase (PC)1/3 or PC2] to generate catestatin by proteolytic processing of CgA. We found that endogenous CTSL colocalizes with CgA in the secretory vesicles of primary rat chromaffin cells. Transfection of PC12 cells with an expression plasmid encoding CTSL directed expression of CTSL toward secretory vesicles. Deconvolution fluorescence microscopy suggested greater colocalization of CTSL with CgA than the lysosomal marker LGP110. The overexpression of CTSL in PC12 cells caused cleavage of full-length CgA. CTSL also cleaved CgA in vitro, in time- and dose-dependent fashion, and specificity of the process was documented through E64 (thiol reagent) inhibition. Mass spectrometry on CTSL-digested recombinant CgA identified a catestatin-region peptide, corresponding to CgA(360-373). The pool of peptides generated from the CTSL cleavage of CgA inhibited nicotine-induced catecholamine secretion from PC12 cells. CTSL processing in the catestatin region was diminished by naturally occurring catestatin variants, especially Pro370Leu and Gly364Ser. Among the CTSL-generated peptides, a subset matched those found in the catestatin region in vivo. These findings indicate that CgA can be a substrate for the cysteine protease CTSL both in vitro and in cella, and their colocalization within chromaffin granules in cella suggests the likelihood of an enzyme/substrate relationship in vivo.


Endocrinology | 2009

Global Disturbances in Autonomic Function Yield Cardiovascular Instability and Hypertension in the Chromogranin A Null Mouse

Jiaur R. Gayen; Yusu Gu; Daniel T. O'Connor; Sushil K. Mahata

We reported previously that chromogranin A (Chga) knockout (KO) mice are hypertensive and hyperadrenergic. Here we sought to determine the basis of such alterations by probing physiological, biochemical, and pharmacological responses to perturbations of the autonomic nervous system. In the conscious state, KO mice had substantially elevated basal high blood pressure (BP) and heart rate (HR); immobilization stress caused increments in systolic BP and HR in both wild-type (WT) and KO mice, with higher maxima but blunted increments in the KO state. Catestatin (CST; CHGA(352-372)) selectively diminished stress-induced increments in BP and HR in KO mice, implicating CST as an antihypertensive peptide, even in stressful conditions. Heightened plasma catecholamines in KO mice returned to WT level after CST. Stress caused further increments in catecholamines in WT mice but no change in KO mice. KO mice displayed diminished baroreflex sensitivity in response to either phenylephrine or sodium nitroprusside, accounting for exaggerated pressor and depressor responses to these compounds; baroreceptor function was normalized by CST. To probe the relative roles of endogenous/basal sympathetic vs. parasympathetic tone in control of BP and HR, we used the muscarinic-cholinergic antagonist atropine or the beta-adrenergic antagonist propranolol; HR and BP responses to each antagonist were exaggerated in KO animals. We conclude that ablation of Chga expression results in global disturbances in autonomic function, both sympathetic and parasympathetic, that can be abrogated (or rescued), at least in part, by replacement of CST. The results point to mechanisms whereby CHGA and its CST fragment act to control cardiovascular homeostasis.


Circulation-cardiovascular Genetics | 2010

Role of Reactive Oxygen Species in Hyperadrenergic Hypertension: Biochemical, Physiological, and Pharmacological Evidence From Targeted Ablation of the Chromogranin A (Chga) Gene

Jiaur R. Gayen; Kuixing Zhang; Satish P. RamachandraRao; Manjula Mahata; Yuqing Chen; Hyung Suk Kim; Robert K. Naviaux; Kumar Sharma; Sushil K. Mahata; Daniel T. O'Connor

Background—Oxidative stress, an excessive production of reactive oxygen species (ROS) outstripping antioxidant defense mechanisms, occurs in cardiovascular pathologies, including hypertension. In the present study, we used biochemical, physiological, and pharmacological approaches to explore the role of derangements of catecholamines, ROS, and the endothelium-derived relaxing factor nitric oxide (NO•) in the development of a hyperadrenergic model of hereditary hypertension: targeted ablation (knockout [KO]) of chromogranin A (Chga) in the mouse. Methods and Results—Homozygous (−/−) Chga gene knockout (KO) mice were compared with wild-type (WT, +/+) control mice. In the KO mouse, elevations of systolic and diastolic blood pressure were accompanied by not only elevated catecholamine (norepinephrine and epinephrine) concentrations but also increased ROS (H2O2) and isoprostane (an index of lipid peroxidation), as well as depletion of NO•. Renal transcript analyses implicated changes in Nox1/2, Xo/Xdh, and Sod1,2 mRNAs in ROS elevation by the KO state. KO alterations in blood pressure, catecholamines, H2O2, isoprostane, and NO• could be abrogated or even normalized (rescued) by either sympathetic outflow inhibition (with clonidine) or NADPH oxidase inhibition (with apocynin). In cultured renal podocytes, H2O2 production was substantially augmented by epinephrine (probably through &bgr;2-adrenergic receptors) and modestly diminished by norepinephrine (probably through &agr;1-adrenergic receptors). Conclusions—ROS appear to play a necessary role in the development of hyperadrenergic hypertension in this model, in a process mechanistically linking elevated blood pressure with catecholamine excess, renal transcriptional responses, ROS elevation, lipid peroxidation, and NO• depletion. Some of the changes appear to be dependent on transcription, whereas others are immediate. The cycle could be disrupted by inhibition of either sympathetic outflow or NADPH oxidase. Because common genetic variation at the human CHGA locus alters BP, the results have implications for antihypertensive treatment as well as prevention of target-organ consequences of the disease. The results document novel pathophysiological links between the adrenergic system and oxidative stress and suggest new strategies to probe the role and actions of ROS within this setting.Background— Oxidative stress, an excessive production of reactive oxygen species (ROS) outstripping antioxidant defense mechanisms, occurs in cardiovascular pathologies, including hypertension. In the present study, we used biochemical, physiological, and pharmacological approaches to explore the role of derangements of catecholamines, ROS, and the endothelium-derived relaxing factor nitric oxide (NO•) in the development of a hyperadrenergic model of hereditary hypertension: targeted ablation (knockout [KO]) of chromogranin A ( Chga ) in the mouse. Methods and Results— Homozygous (−/−) Chga gene knockout (KO) mice were compared with wild-type (WT, +/+) control mice. In the KO mouse, elevations of systolic and diastolic blood pressure were accompanied by not only elevated catecholamine (norepinephrine and epinephrine) concentrations but also increased ROS (H2O2) and isoprostane (an index of lipid peroxidation), as well as depletion of NO•. Renal transcript analyses implicated changes in Nox1/2 , Xo/Xdh , and Sod1,2 mRNAs in ROS elevation by the KO state. KO alterations in blood pressure, catecholamines, H2O2, isoprostane, and NO• could be abrogated or even normalized (rescued) by either sympathetic outflow inhibition (with clonidine) or NADPH oxidase inhibition (with apocynin). In cultured renal podocytes, H2O2 production was substantially augmented by epinephrine (probably through β2-adrenergic receptors) and modestly diminished by norepinephrine (probably through α1-adrenergic receptors). Conclusions— ROS appear to play a necessary role in the development of hyperadrenergic hypertension in this model, in a process mechanistically linking elevated blood pressure with catecholamine excess, renal transcriptional responses, ROS elevation, lipid peroxidation, and NO• depletion. Some of the changes appear to be dependent on transcription, whereas others are immediate. The cycle could be disrupted by inhibition of either sympathetic outflow or NADPH oxidase. Because common genetic variation at the human CHGA locus alters BP, the results have implications for antihypertensive treatment as well as prevention of target-organ consequences of the disease. The results document novel pathophysiological links between the adrenergic system and oxidative stress and suggest new strategies to probe the role and actions of ROS within this setting.


Bioorganic & Medicinal Chemistry Letters | 2014

Synthesis of novel β-carboline based chalcones with high cytotoxic activity against breast cancer cells.

Shikha S. Chauhan; Anup Kumar Singh; Sanjeev Meena; Minaxi Lohani; Akhilesh Singh; Rakesh Kumar Arya; Srikanth H. Cheruvu; Jayanta Sarkar; Jiaur R. Gayen; Dipak Datta; Prem M.S. Chauhan

A series of novel β-carboline based chalcones was synthesized and evaluated for their cytotoxic activity against a panel of human cancer cell lines. Among them we found that two of the compounds 7c and 7d, showed marked anti-proliferative activity in a panel of solid tumor cell lines with highest effect in breast cancer. The compounds 7c and 7d showed an IC50 of 2.25 and 3.29 μM, respectively against human breast cancer MCF-7 cell line. Further, the compound 7c markedly induced DNA fragmentation and apoptosis in breast cancer cells.


Endocrinology | 2010

Chromogranin A and the Autonomic System: Decomposition of Heart Rate Variability and Rescue by Its Catestatin Fragment

Nagendu B. Dev; Jiaur R. Gayen; Daniel T. O'Connor; Sushil K. Mahata

Chromogranin A (CHGA/Chga) has been implicated in the genesis of systemic hypertension and consequent cardiac abnormalities. Catestatin (CST) (human CHGA(352-372)) replacement reduces blood pressure elevation and increases baroreflex sensitivity in Chga knockout (KO) mice. Because of the dampened baroreflex sensitivity, we reasoned that KO mice would display altered heart rate variability (HRV). Thus, we evaluated beat-to-beat measurements in HRV in wild-type (WT) and KO mice, before and after CST replacement. HR dynamics were evaluated by bipolar Einthoven electrocardiogram, with deconvolution into time and frequency domains, as well as Lorenz nonlinear return analyses. At baseline, HR was higher [444 +/- 24 beats per minute (bpm)] in KO compared with WT (330 +/- 18 bpm) mice. The total power in the HRV spectra was substantially diminished in KO animals. CST increased total power but only in KO mice. Each time-domain parameter was substantially lower in KO compared with WT mice, and the CST in the KO group could reverse the differences. Lorenz analysis revealed reductions in S1 (short axis perpendicular to the line of identity in the ellipse) and S2 (long axis along the line of identity in the ellipse) in KO animals, indicating that regulation of HRV is diminished in the parasympathetic and sympathetic domains. CST replacement caused restoration of both S1 and S2, in the KO group. These data suggest that Chga has a profound effect on autonomic tone to the heart and that its CST fragment is responsible for such actions. The results suggest future strategies for intervention in cardiovascular disorders accompanied by adverse HRV profiles.


Diabetes | 2015

Pancreastatin-dependent inflammatory signaling mediates obesity-induced insulin resistance

Gautam Bandyopadhyay; Minh Lu; Ennio Avolio; Jawed A. Siddiqui; Jiaur R. Gayen; Joshua Wollam; Christine U. Vu; Nai-Wen Chi; Daniel T. O’Connor; Sushil K. Mahata

Chromogranin A knockout (Chga-KO) mice exhibit enhanced insulin sensitivity despite obesity. Here, we probed the role of the chromogranin A–derived peptide pancreastatin (PST: CHGA273–301) by investigating the effect of diet-induced obesity (DIO) on insulin sensitivity of these mice. We found that on a high-fat diet (HFD), Chga-KO mice (KO-DIO) remain more insulin sensitive than wild-type DIO (WT-DIO) mice. Concomitant with this phenotype is enhanced Akt and AMPK signaling in muscle and white adipose tissue (WAT) as well as increased FoxO1 phosphorylation and expression of mature Srebp-1c in liver and downregulation of the hepatic gluconeogenic genes, Pepck and G6pase. KO-DIO mice also exhibited downregulation of cytokines and proinflammatory genes and upregulation of anti-inflammatory genes in WAT, and peritoneal macrophages from KO mice displayed similarly reduced proinflammatory gene expression. The insulin-sensitive, anti-inflammatory phenotype of KO-DIO mice is masked by supplementing PST. Conversely, a PST variant peptide PSTv1 (PST-NΔ3: CHGA276–301), lacking PST activity, simulated the KO phenotype by sensitizing WT-DIO mice to insulin. In summary, the reduced inflammation due to PST deficiency prevented the development of insulin resistance in KO-DIO mice. Thus, obesity manifests insulin resistance only in the presence of PST, and in its absence obesity is dissociated from insulin resistance.


Journal of Hypertension | 2010

Effects of chromogranin A Deficiency and Excess in vivo: Biphasic Blood Pressure and Catecholamine Responses

Sucheta M. Vaingankar; Ying Li; Nilima Biswas; Jiaur R. Gayen; Sonia Choksi; Fangwen Rao; Michael G. Ziegler; Sushil K. Mahata; Daniel T. O'Connor

Objective The phenotype of the chromogranin A (Chga) null (knockout) mouse is hypertensive. However, hypertensive humans and spontaneously hypertensive rats display elevated CHGA expression. This study addresses the paradox that both ablation and elevation of CHGA result in hypertension. Methods Mice with varying copy number of the CHGA gene were generated. In these mice CHGA, catecholamine and blood pressure (BP) were measured. Also a cohort of healthy human individuals was stratified into tertiles based on plasma CHGA expression and phenotyped for characteristics including their BP response to environmental (cold) stress. Results The mice displayed a direct CHGA gene dose-dependent (0–4 copies/genome) activation of CHGA expression in both plasma and adrenal gland, yet the BP dependence of CHGA gene dose was U-shaped, maximal at 0 and four copies of the gene, whereas minimal at two copies (i.e., the wild-type gene dosage). Plasma catecholamine showed a parallel U-shaped dose/response in mice, whereas adrenal epinephrine exhibited a reciprocal (inverted) U-shaped response, suggesting dysregulated neurotransmission at both extremes of CHGA expression. The human individuals also showed a nonlinear relationship between CHGA expression and pressor responses to environmental (cold) stress, that were maximal in the highest and lowest tertiles, though basal BPs did not differ among the groups. The human CHGA tertiles also differed in epinephrine secretion as well as degree of CHGA processing to catestatin (catecholamine release-inhibitory peptide derived from CHGA processing). Conclusion Thus, across mammalian species, an optimal amount of CHGA may be required to establish appropriate catecholamine storage and release, and hence BP homeostasis.

Collaboration


Dive into the Jiaur R. Gayen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manjula Mahata

University of California

View shared research outputs
Top Co-Authors

Avatar

Nilima Biswas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuixing Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guru R. Valicherla

Academy of Scientific and Innovative Research

View shared research outputs
Top Co-Authors

Avatar

Fangwen Rao

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge