Jiawei Mao
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiawei Mao.
Journal of Proteomics | 2015
K. F. Wang; Yongjin J. Zhou; Hongwei Liu; Kai Cheng; Jiawei Mao; Fangjun Wang; Wujun Liu; Mingliang Ye; Zongbao K. Zhao; Hanfa Zou
UNLABELLED Protein methylation catalyzed by SAM-dependent methyltransferase represents a major PTM involved in many important biological processes. Because methylation can occur on nitrogen, oxygen and sulfur centers and multiple methylation states exist on the nitrogen centers, methylproteome remains poorly documented. Here we present the methylation by isotope labeled SAM (MILS) strategy for a highly-confident analysis of the methylproteome of the yeast Saccharomyces cerevisiae based on the online multidimensional μHPLC/MS/MS technology. We identified 43 methylated proteins, containing 68 methylation events associated with 64 methylation sites. More than 90% of these methylation events were previously unannotated in Uniprot database. Our results indicated, 1) over 2.6% of identified S. cerevisiae proteins are methylated, 2) the amino acid residue preference of protein methylation follows the order Lys≫Arg>Asp>Asn≈Gln≈His>Glu>Cys, and 3) the methylation state on nitrogen center is largely exclusive. As our dataset covers various types of methylation centers, it provides rich information about yeast methylproteome and should significantly contribute to the field of protein methylation. BIOLOGICAL SIGNIFICANCE In this paper, we presented the methylation by isotope labeled SAM (MILS) strategy for a highly-confident analysis of the methylproteome of the yeast S. cerevisiae and collected a comprehensive list of proteins methylated on a set of distinct residues (K, R, N, E, D, Q, H, C). Our study provided useful information about the amino acid residue preference and methylation state distributions on nitrogen centers of protein methylation in S. cerevisiae.
Scientific Reports | 2015
Junfeng Huang; Hongqiang Qin; Zhen Sun; Guang Huang; Jiawei Mao; Kai Cheng; Zhang Zhang; Hao Wan; Yating Yao; Jing Dong; Jun Zhu; Fangjun Wang; Mingliang Ye; Hanfa Zou
Enrichment of glycopeptides by hydrazide chemistry (HC) is a popular method for glycoproteomics analysis. However, possible side reactions of peptide backbones during the glycan oxidation in this method have not been comprehensively studied. Here, we developed a proteomics approach to locate such side reactions and found several types of the side reactions that could seriously compromise the performance of glycoproteomics analysis. Particularly, the HC method failed to identify N-terminal Ser/Thr glycopeptides because the oxidation of vicinal amino alcohol on these peptides generates aldehyde groups and after they are covalently coupled to HC beads, these peptides cannot be released by PNGase F for identification. To overcome this drawback, we apply a peptide N-terminal protection strategy in which primary amine groups on peptides are chemically blocked via dimethyl labeling, thus the vicinal amino alcohols on peptide N-termini are eliminated. Our results showed that this strategy successfully prevented the oxidation of peptide N-termini and significantly improved the coverage of glycoproteome.
Analytical and Bioanalytical Chemistry | 2014
Yanbo Pan; Kai Cheng; Jiawei Mao; Fangjie Liu; Jing Liu; Mingliang Ye; Hanfa Zou
AbstractTrypsin is the popular protease to digest proteins into peptides in shotgun proteomics, but few studies have attempted to systematically investigate the kinetics of trypsin-catalyzed protein digestion in proteome samples. In this study, we applied quantitative proteomics via triplex stable isotope dimethyl labeling to investigate the kinetics of trypsin-catalyzed cleavage. It was found that trypsin cleaves the C-terminal to lysine (K) and arginine (R) residues with higher rates for R. And the cleavage sites surrounded by neutral residues could be quickly cut, while those with neighboring charged residues (D/E/K/R) or proline residue (P) could be slowly cut. In a proteome sample, a huge number of proteins with different physical chemical properties coexists. If any type of protein could be preferably digested, then limited digestion could be applied to reduce the sample complexity. However, we found that protein abundance and other physicochemical properties, such as molecular weight (Mw), grand average of hydropathicity (GRAVY), aliphatic index, and isoelectric point (pI) have no notable correlation with digestion priority of proteins. Graphical AbstractSequence logos of four cleavage site types with different kinetics (very fast, fast, slow, and very slow sites)
Analytical Chemistry | 2016
Fangjie Liu; Hao Wan; Zhongshan Liu; Hongwei Wang; Jiawei Mao; Mingliang Ye; Hanfa Zou
In this study, we developed a Ti(IV) monolithic spin tip for phosphoproteome analysis of a minute amount of biological sample for the first time. The surface of polypropylene pipet tip was activated by the photoinitiator benzophenone under UV light radiation followed by polymerization of ethylene glycol methacrylate phosphate and bis-acrylamide in the tip to form a porous monolith with reactive phosphate groups. The as-prepared tips grafted with monolithic adsorbent were then chelated with titanium(IV) ion for phosphopeptide enrichment. It was found that the tips enabled fast and efficient capture of phosphopeptides from microscale complex samples. The monolithic tip was demonstrated to have a detection limit as low as 5 fmol β-casein tryptic digest, along with an exceptionally high specificity to capture phosphopeptides from complex tryptic digest mixed with an unphosphorylated protein and a phosphorylated protein at a molar ratio up to 1000:1. When the tip was applied to enrich phosphopeptides from 5 μg of tryptic digest of complex HeLa cell proteins, 1185 high confidence of phosphorylated sites were successfully identified with the specificity as high as 92.5%. So far, this is the most sensitive phosphoproteomics analysis using a standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) system for proteome-wide phosphorylation analysis in mammalian cells.
Analytical Chemistry | 2017
Hongqiang Qin; Kai Cheng; Jun Zhu; Jiawei Mao; Fangjun Wang; Mingming Dong; Rui Chen; Zhimou Guo; Xinmiao Liang; Mingliang Ye; Hanfa Zou
The diversity of O-linked glycan structures has drawn increasing attention due to its vital biological roles. However, intact O-glycopeptides with different glycans are typically not well elucidated using the current methods. In this work, an integrated strategy was developed for comprehensive analysis of O-GalNAc glycosylation by combining hydrophilic interaction chromatography (HILIC) tip enrichment, beam-type collision induced decomposition (beam-CID) detection, and in silico deglycosylation method for spectra interpretation. In this strategy, the intact O-GalNAc glycopeptides were selectively enriched and the original spectra obtained by time-of-flight (TOF)-CID were preprocessed using an in silico deglycosylation method, enabling direct searching without setting multiple glycosylation modifications, which could significantly decrease the search space. This strategy was applied to analyze the O-GalNAc glycoproteome of human serum, leading to identification of 407 intact O-GalNAc glycopeptides from 93 glycoproteins. About 81% of the glycopeptides contained at least one sialic acid, which could reveal the microheterogeneity of O-GalNAc glycosylation. Up until now, this is the largest data set of intact O-GalNAc glycoforms from complex biological samples at the proteome level. Furthermore, this method is readily applicable to study O-glycoform heterogeneity in other complex biological systems.
Analytical Chemistry | 2015
Jing Liu; Fangjun Wang; Jiawei Mao; Zhang Zhang; Zheyi Liu; Guang Huang; Kai Cheng; Hanfa Zou
N-dodecyl β-D-maltoside (DDM), a mild detergent with the ability to maintain the enzyme activity and solubilize hydrophobic proteins without changing their structures, was applied for N-glycoproteomic analysis of minute protein sample from mouse brain tissue. After combining with the capillary-based glycoproteomic reactor, 281 N-glycosylation sites were successfully characterized from 50 μg of mouse brain tissue, which was 110% higher at least than those obtained by conventional strategies.
Analytical Chemistry | 2015
Junfeng Huang; Hao Wan; Yating Yao; Jinan Li; Kai Cheng; Jiawei Mao; Jin Chen; Yan Wang; Hongqiang Qin; Weibing Zhang; Mingliang Ye; Hanfa Zou
Selective enrichment of glycopeptides from complex sample followed by cleavage of N-glycans by PNGase F to expose an easily detectable mark on the former glycosylation sites has become the popular protocol for comprehensive glycoproteome analysis. On account of the high enrichment specificity, hydrazide chemistry based solid-phase extraction of N-linked glycopeptides technique has sparked numerous interests. However, the enzymatic release of glycopeptides captured by hydrazide beads through direct incubation of the beads with PNGase F is not efficient due to the inherent steric hindrance effect. In this study, we developed a hydroxylamine assisted PNGase F deglycosylation (HAPD) method using the hydroxylamine to release glycopeptides captured on the hydrazide beads through the cleavage of hydrazone bonds by transamination followed with the PNGase F deglycosylation of the released glycopeptides in the free solution. Because of the homogeneous condition for the deglycosylation, the recovery of deglycosylated peptides (deglycopeptides) was improved significantly. It was found that 27% more N-glycosylation sites were identified by the HAPD strategy compared with the conventional method. Moreover, the ratio of identified N-terminal glycosylated peptides was improved over 5-fold.
Journal of Proteome Research | 2015
Zhang Zhang; Deguang Sun; Yuting Cong; Jiawei Mao; Junfeng Huang; Hongqiang Qin; Jing Liu; Guang Huang; Liming Wang; Mingliang Ye; Hanfa Zou
An amine chemistry method was developed for the extraction of N-glycopeptides using amine-functionalized beads for glycoproteomics analysis. Two reductive amination reactions between primary amine and aldehyde were employed in this approach. The first one was to block the primary amines in the peptides by addition of formaldehyde and sodium cyanoborohydride into the peptide sample, and the second one was to couple the glycopeptides onto solid phase beads by incubating the glycopeptides containing aldehyde groups (oxidized by periodate) with the amine-functionalized beads in the presence of sodium cyanoborohydride. It was demonstrated that the blocking of primary amines in the peptides by the first reductive amination reaction prior to the periodate oxidation made the amine chemistry method very efficient and sensitive. This new method was validated by analysis of glycoprotein standards as well as proteome samples. It was found that this new method led to significant increase in the identification of N-glycosites compared with the conventional hydrazide chemistry method.
Molecular & Cellular Proteomics | 2017
Zhenzhen Deng; Jiawei Mao; Yan Wang; Hanfa Zou; Mingliang Ye
Many important experiments in proteomics including protein digestion, enzyme substrate screening, enzymatic labeling, etc., involve the enzymatic reactions in a complex system where numerous substrates coexists with an enzyme. However, the enzyme kinetics in such a system remains unexplored and poorly understood. Herein, we derived and validated the kinetics equations for the enzymatic reactions in complex system. We developed an iteration approach to depict the enzymatic reactions in complex system. It was validated by 630 time-course points from 24 enzymatic reaction experiments and was demonstrated to be a powerful tool to simulate the reactions in the complex system. By applying this approach, we found that the ratio of substrate depletion is independent of other coexisted substrates under specific condition. This observation was then validated by experiments. Based on this striking observation, a simplified model was developed to determine the catalytic efficiencies of numerous competing substrates presented in the complex enzyme reaction system. When coupled with high-throughput quantitative proteomics technique, this simplified model enabled the accurate determination of catalytic efficiencies for 2369 peptide substrates of a protease by using only one enzymatic reaction experiment. Thus, this study provided, in the first time, a validated model for the large scale determination of specificity constants which could enable the enzyme substrate screening approach turned from a qualitative method of identifying substrates to a quantitative method of identifying and prioritizing substrates. Data are available via ProteomeXchange with identifier PXD004665.
Analytical Chemistry | 2017
Xuefang Dong; Hongqiang Qin; Jiawei Mao; Dongping Yu; Xiuling Li; Aijin Shen; Jingyu Yan; Long Yu; Zhimou Guo; Mingliang Ye; Hanfa Zou; Xinmiao Liang
Sialylation typically occurs at the terminal of glycans, and its aberration often correlates with diseases including neurological diseases and cancer. However, the analysis of glycoprotein sialylation in complex biological samples is still challenging due to their low abundance. Herein, a histidine-bonded silica (HBS) material with a hydrophilic interaction and switchable surface charge was fabricated to enrich sialylated glycopeptides (SGPs) from the digest of proteomics samples. High selectivity toward SGPs was obtained by combining the superior hydrophilicity and switchable-charge characteristics. During the enrichment of sialylated glycopeptides from bovine fetuin digest, seven glycopeptides were detected even at the ratio of 1:5000 with the nonsialylated glycopeptides, demonstrating the high specificity of SGP enrichment by using HBS material. Then, HBS material was further utilized to selectively enrich SGPs from the protein digest of human serum, and 487 glycosites were identified from only 2 μL of human serum; 92.0% of the glycopeptides contained at least one sialic acid, indicating good performance for SGP enrichment by using HBS material. Furthermore, the prepared HBS material also has great potential applications in the analysis of glycoprotein sialylation from other complex biological samples.