Jiaxin Jiang
Xiamen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiaxin Jiang.
AIP Advances | 2016
Gaofeng Zheng; Ping Zhu; Lingling Sun; Jiaxin Jiang; Juan Liu; Xiang Wang; Wenwang Li
Near-field electrospray was used to deposit zinc acetate precursor particles over comb electrodes. These particles were heated and oxidized to form a zinc oxide (ZnO) semiconductor at 500 °C. The resulting ZnO thin film on the comb electrode was incorporated into a gas sensor, which was examined using a custom built measurement system. The current that was measured through the electrodes was used to calculate the resistance of the ZnO between the fingers of the comb electrode. The resistance decreased as the sensor was exposed to the target gas of ethanol, while the sensing response (R0/Rg) increased at higher concentrations of target gas. The ZnO sensor displayed high sensitivity because of the small diameters and high specific surface area of the electrospray particles. The ZnO sensors show great promise for use as micro/nano gas sensors as they exhibit high sensitivity, repeatability and stability.
AIP Advances | 2016
Jianyi Zheng; Kai Zhang; Jiaxin Jiang; Guangqi He; Lei Xu; Yifang Liu; Juan Liu; Dezhi Wu; Gaofeng Zheng
Laminar sheath gas is introduced to increase the stability of Electrohydrodynamic Direct-Writing (EDW). The external stretching force from sheath gas promotes the ejection threshold, the diameter of jet and printed fibers as well. The critical voltage decreases with the increase of sheath gas pressure. The stretching force from sheath gas decreases the diameter of printed fiber as well as that of charged jet. As sheath gas pressure increases from 0 to 25 kPa, the average diameter of micro/nano structure reduces from 4.46μm to 845.25 nm. The laminar field flow of sheath gas shelters the charged jet free from the surrounding interferences, and helps charged jet to move in a straight line. With the help of sheath gas, the stability of charged jet can be improved to direct-write precise complex micro-pattern. The position precision of direct-written pattern is less than 5μm. As a novel method, EDW with laminar sheath gas would promote the deposition precision of printed micro/nano structure and its application.
AIP Advances | 2016
Yang Zhao; Jiaxin Jiang; Wenwang Li; Xiang Wang; Kai Zhang; Ping Zhu; Gaofeng Zheng
Increasing the ejection efficiency and uniformity of nanofibers is the key to applications of electrospinning technology. In this work, a novel electrospinning spinneret with a sheath gas passageway is designed. The frictional resistance that stems from the sheath gas provides additional stretching and restriction forces on the jet. The sheath gas also reduces interference and enhances the stability of the charged jet. A bead-on-strain simulation model is built up to determine the constraint effects of the sheath gas. Simulation results show that the sheath gas decreases the motion area and increases the stretching ratio of the liquid jet. The stretching force from the sheath gas decreases the diameter and increases the uniformity of the nanofiber. As the gas pressure increases from 0 kPa to 50 kPa, the critical voltage of the jet ejection decreases from 8.4 kV to 2.5 kV, the diameter of the nanofiber deposition zone decreases from 40 cm to 10 cm, and the diameter of the nanofibers decreases from 557.97 n...
Micromachines | 2018
Yifang Liu; Ruimin Liu; Xiang Wang; Jiaxin Jiang; Wenwang Li; Juan Liu; Shumin Guo; Gaofeng Zheng
The fast and precise fabrication of three-dimensional (3D) nanofibrous structures is the important development trend for electrospinning technique. In this paper, probe arrays were served as collectors to build up 3D electrospun nanofibrous structures. The height of probes was adjusted to form complex shapes, through which different stereo structures were achieved accurately. The effects of processing parameters were investigated, such as the probe height, probe interval, applied voltage and flow rate. The deposition area of 3D electrospun nanofibrous structure decreased with the increase of applied voltage and flow rate. Several 3D nanofibrous structures of special shapes including convex, triangle wave, inverted cone and complex curved surface were demonstrated. This work provides an effective and easy way for the construction of 3D electrospun nanofibrous structures, which has great potential in industrial applications.’
Micromachines | 2018
Wenwang Li; Jinghua Lin; Xiang Wang; Jiaxin Jiang; Shumin Guo; Gaofeng Zheng
Electrospray is a simple and cost-effective method to fabricate micro-structured thin films. This work investigates the electrospray process of ZnO patterns. The effects of experimental parameters on jet characteristics and electrosprayed patterns are studied. The length of stable jets increases with increasing applied voltage and flow rate, and decreases with increasing nozzle-to-substrate distance, while electrospray angles exhibit an opposite trend with respect to the stable jet lengths. The diameter of electrosprayed particles decreases with increasing applied voltage, and increases with flow rate. Furthermore, an alcohol gas sensor is presented. The ZnAc is calcined into ZnO, which reveals good repeatability and stability of response in target gas. The sensing response, defined as the resistance ratio of R0/Rg, where R0 and Rg are resistance of ZnO in air and alcohol gas, increases with the concentration of alcohol vapors and electrospray deposition time.
Micromachines | 2018
Jiaxin Jiang; Xiang Wang; Wenwang Li; Juan Liu; Yifang Liu; Gaofeng Zheng
Electrohydrodynamic direct-writing (EDW) is a developing technology for high-resolution printing. How to decrease the line width and improve the deposition accuracy of direct-written patterns has been the key to the promotion for the further application of EDW. In this paper, an airflow-assisted spinneret for electrohydrodynamic direct-writing was designed. An assisted laminar airflow was introduced to the EDW process, which provided an additional stretching and constraining force on the jet to reduce the surrounding interferences and enhance jet stability. The flow field and the electric field around the spinneret were simulated to direct the structure design of the airflow-assisted spinneret. Then, a series of experiments were conducted, and the results verified the spinneret design and demonstrated a stable ejection of jet in the EDW process. With assisted airflow, the uniformity of printed patterns and the deposition position accuracy of a charged jet can be improved. Complex patterns with positioning errors of less than 5% have been printed and characterized, which provide an effective way to promote the integration of micro/nanosystems.
Micromachines | 2018
Jiaxin Jiang; Gaofeng Zheng; Ping Zhu; Juan Liu; Yifang Liu; Xiang Wang; Wenwang Li; Shumin Guo
Based on the electrohydrodynamic (EHD) theory, a novel method of near-field electrospray is proposed to fabricate micropatterns with micro/nano-scale particles. Compared with conventional electrospray technology, the deposition area can be decreased to print a regular pattern according to the moving trajectory of the substrate by shortening the distance between the nozzle and the collector to several millimeters in near-field electrospray. The controlling strategies in the near-field electrospray deposition process were investigated. The line width of printed pattern increased with the increase of applied voltage, deposition time, and flow rate of solution. However, it decreased with the increase of motion velocity of the substrate. By applying a suitable matching of electrospray parameters, the regular patterns with a line width under 500 μm were printed controllably on the substrate. Thereby, atomized particles from near-field electrospray were successfully deposited in specific patterns. Characters of ‘2’, ‘7’, and ‘9’ with uniform width and steady shape were patterned. This work provides an excellent way to promote the precision integrated manufacturing of electronic system.
Micromachines | 2018
Xiang Wang; Jinghua Lin; Jiaxin Jiang; Shumin Guo; Wenwang Li; Gaofeng Zheng
A continuous near-field electrospray process has been developed to deposit micropatterns. Different from traditional electrospray technologies, the nozzle-to-substrate distance was shortened to less than 5 mm, and a glass capillary nozzle with a diameter of tens of microns was used. Steady and continuous ejection was achieved, and patterns with line widths of sub-100 μm were generated. The influence of experimental parameters was investigated. The critical voltage for electrospray increased with nozzle-to-substrate distance and flow rate. The line width of electrosprayed patterns increased with the increases in applied voltage, flow rate, nozzle diameter, and deposition time. This work provides a simple and potential route for on-demand deposition of micro-/nano-patterns in the electrospray process.
Journal of Physics: Conference Series | 2018
Jiaxin Jiang; Gaofeng Zheng; Xiang Wang; Jianyi Zheng; Juan Liu; Yifang Liu; Wenwang Li; Shumin Guo
Electrohydrodynamic Direct-Write (EDW) is a novel technology for the printing of micro/nano structures. In this paper, Alternating Current (AC) electrical field was introduced to improve the ejection stability of jet with highly conductive solution. By alternating the electrical field, the polarity of free charges on the surface of jet was changed and the average density of charge, as well as the repulsive force, was reduced to stabilize the jet. When the frequency of AC electrical field increased, the EDW process became more stable and the shape of deposited droplets became more regular. The diameter of printed droplets decreased and the deposition frequency increased with the increase of voltage frequency. The phenomenon of corona discharge was overcome effectively as well. To further evaluate the performance of AC EDW for highly conductive solution, more NaCl was added to the solution and the conductivity was increased to 2810μs/cm. With such high conductivity, the problem of serious corona discharge could still be prevented by AC EDW, and the diameter of printed droplets decreased significantly. This work provides an effective way to accelerate industrial applications of EDW.
AIP Advances | 2018
Jianyi Zheng; Kai Zhang; Jiaxin Jiang; Xiang Wang; Wenwang Li; Yifang Liu; Juan Liu; Gaofeng Zheng
By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce contin...