Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiayang Wu is active.

Publication


Featured researches published by Jiayang Wu.


arXiv: Optics | 2017

Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity

Jiayang Wu; Tania Moein; Xingyuan Xu; Guanghui Ren; Arnan Mitchell; David J. Moss

We propose and experimentally demonstrate the enhancement in the filtering quality (Q) factor of an integrated micro-ring resonator (MRR) by embedding it in an integrated Fabry-Perot (FP) cavity formed by cascaded Sagnac loop reflectors. By utilizing coherent interference within the FP cavity to reshape the transmission spectrum of the MRR, both the Q factor and the extinction ratio (ER) can be significantly improved. The device is theoretically analyzed and practically fabricated on a silicon-on-insulator wafer. Experimental results show that up to 11-times improvement in the Q factor, together with an 8-dB increase in the ER, can be achieved via our proposed method. The impact of varying structural parameters on the device performance is also investigated and verified by the measured spectra of the fabricated devices with different structural parameters.We propose and experimentally demonstrate the enhancement in the filtering quality (Q) factor of an integrated micro-ring resonator (MRR) by embedding it in an integrated Fabry-Perot (FP) cavity formed by cascaded Sagnac loop reflectors (SLRs). By utilizing coherent interference within the FP cavity to reshape the transmission spectrum of the MRR, both the Q factor and the extinction ratio (ER) can be significantly improved. The device is theoretically analyzed, and practically fabricated on a silicon-on-insulator (SOI) wafer. Experimental results show that up to 11-times improvement in Q factor, together with an 8-dB increase in ER, can be achieved via our proposed method. The impact of varying structural parameters on the device performance is also investigated and verified by the measured spectra of the fabricated devices with different structural parameters.


APL Photonics | 2017

Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source

Xingyuan Xu; Jiayang Wu; Mehrdad Shoeiby; Thach G. Nguyen; Sai T. Chu; Brent E. Little; Roberto Morandotti; Arnan Mitchell; David J. Moss

We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR). The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for implementing a transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, frequency spacings of up to 200-GHz can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of the first-, second-, and third-order differentiation functions based on this principle are presented. The radio frequency amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for a Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR). The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for implementing a transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, frequency spacings of up to 200-GHz can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of first-, second-, and third-order differentiation functions based on this principle are presented. The radio frequency (RF) amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for a Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.


Optics Express | 2017

On chip chirality-distinguishing beamsplitter

Fengchun Zhang; Yao Liang; Heran Zhang; Chong Lei; Jiayang Wu; Ning Zhu; Shuwen Zheng; Yong Zhang; Xuguang Huang; Baohua Jia; Songhao Liu

The chirality of photons plays a fundamental role in light-matter interactions. However, a limiting factor in photonic integrated circuits is the lack of a miniaturized component, which can distinguish the chirality in a low cost and integrated manner. Herein we numerically demonstrate a chirality-distinguishing beamsplitter that can address this challenge. It consists of an integrated polarization rotator and a linear polarization beamsplitter, which together can fulfill the task of distinguishing and splitting left- and right-handed quasi-circularly polarized modes on a chip with an ultra-broadband operation range from 1.45 μm to 1.65 μm. Owning to the reciprocity, the device can emit photons with selectable spin angular momentum depending on the chosen feeding waveguide. The device is compatible with complementary metal-oxide semiconductor technology and it may open up new avenues in the fields of on-chip nano-photonics, bio-photonics and quantum information science.


arXiv: Optics | 2017

Harnessing optical micro-combs for microwave photonics.

Jiayang Wu; Xingyuan Xu; Thach G. Nguyen; Sai T. Chu; Brent E. Little; Roberto Morandotti; Arnan Mitchell; David J. Moss

Over the past decade, optical frequency combs generated by high-Q microresonators, or optical microcombs, which feature compact device footprints, low power consumption, and high repetition rates in broad optical bandwidths, have led to a revolution in a wide range of fields including metrology, telecommunications, radio frequency (RF) photonics, spectroscopy, sensing, and quantum optics. Among these, an application that has attracted great interest is the use of optical microcombs for RF photonics, where they offer enhanced functionalities as well as reduced size and power consumption over other approaches. This paper reviews the recent advances in this emerging field. We provide an overview of the main achievements that have been obtained to date, and highlight the strong potential of optical microcombs for RF photonics applications. We also discuss some of the open challenges and limitations that need to be addressed for practical applications.In the past decade, optical frequency combs generated by high-Q micro-resonators, or micro-combs, which feature compact device footprints, high energy efficiency, and high-repetition-rates in broad optical bandwidths, have led to a revolution in a wide range of fields including metrology, mode-locked lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum optics. Among these, an application that has attracted great interest is the use of micro-combs for RF photonics, where they offer enhanced functionalities as well as reduced size and power consumption over other approaches. This article reviews the recent advances in this emerging field. We provide an overview of the main achievements that have been obtained to date, and highlight the strong potential of micro-combs for RF photonics applications. We also discuss some of the open challenges and limitations that need to be met for practical applications.


arxiv:physics.app-ph | 2018

A Radio Frequency Channelizer based on Cascaded Integrated Micro-ring Resonator Optical Comb Sources and Filters

Xingyuan Xu; Jiayang Wu; Thach G. Nguyen; Sai T. Chu; Brent E. Little; Roberto Morandotti; Arnan Mitchell; David J. Moss

We report a broadband RF channelizer based on an integrated optical frequency Kerr micro-comb source, with an RF channelizing bandwidth of 90 GHz, a high RF spectral slice resolution of 1.04 GHz, and experimentally verify the RF performance up to 19 GHz. This approach to realizing RF channelizers offers reduced complexity, size, and potential cost for a wide range of applications to microwave signal detection.


arxiv:physics.app-ph | 2018

High-order Radio Frequency Differentiation via Photonic Signal Processing with an Integrated Micro-resonator Kerr Optical Frequency Comb Source

Xingyuan Xu; Jiayang Wu; Mehrdad Shoeiby; Sai T. Chu; Brent E. Little; Roberto Morandotti; Arnan Mitchell; David J. Moss

We demonstrate the use of integrated micro-resonator based optical frequency comb sources as the basis for transversal filtering functions for microwave and radio frequency photonic filtering and advanced functions. Keywords—frequency comb, microwave, micro-resonator


SPIE Proceedings: 'SPIE LASE 2018', Laser Resonators, Microresonators, and Beam Control XX, 27 January - 1 February 2018, San Francisco, California, United States / Alexis V. Kudryashov, Alan H. Paxton, Vladimir S. Ilchenko (eds.) | 2018

Integrated Kerr micro-comb sources for photonic microwave applications

David J. Moss; Xingyuan Xu; Jiayang Wu; Arnan Mitchell; Roberto Morandotti; Brent E. Little; Sai T. Chu

We investigate the application of integrated micro-combs in RF photonic systems and demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator. The on-chip Kerr optical comb is CMOS-compatible and contains a large number of comb lines, which can serve as a high-performance multi-wavelength source for the transversal filter, thus greatly reduce the cost, size, and complexity of the system. The operation principle is theoretically analyzed, and experimental demonstrations of fractional-, first-, second-, and thirdorder differentiation functions based on the principle are presented.We review new applications of integrated microcombs in RF and microwave photonic systems. We demonstrate a wide range of powerful functions including a photonic intensity high order and fractional differentiators, optical true time delays, advanced filters, RF channelizer and other functions, based on a Kerr optical comb generated by a compact integrated microring resonator, or microcomb. The microcomb is CMOS compatible and contains a large number of comb lines, which can serve as a high performance multiwavelength source for the transversal filter, thus greatly reduce the cost, size, and complexity of the system. The operation principle of these functions is theoretically analyzed, and experimental demonstrations are presented.


Optics Express | 2018

Advanced RF and microwave functions based on an integrated optical frequency comb source

Xingyuan Xu; Jiayang Wu; Thach G. Nguyen; Mehrdad Shoeiby; Sai T. Chu; Brent E. Little; Roberto Morandotti; Arnan Mitchell; David J. Moss

We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwaveWe demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.


Nanophotonics Australasia 2017 | 2018

Spectrum reshaping of micro-ring resonator via an integrated Fabry-Perot cavity

Jiayang Wu; Tania Moein; Xingyuan Xu; Guanghui Ren; Arnan Mitchell; David J. Moss

We investigate the enhancement in the filtering quality (Q) factor of an integrated micro-ring resonator (MRR) by embedding it in an integrated Fabry-Perot (FP) cavity formed by cascaded Sagnac loop reflectors (SLRs). By using coherent interference within the FP cavity to reshape the transmission spectrum of the MRR, both the Q factor and the extinction ratio (ER) can be greatly improved. The device is theoretically analyzed, and practically fabricated on a silicon-on-insulator (SOI) platform. Experimental results show that up to 11-times improvement in Q factor and an 8-dB increase in ER can be achieved via our proposed method. The impact of varying structural parameters on the device performance is also investigated and verified.


Nanophotonics Australasia 2017 | 2018

Integrated Kerr comb-based reconfigurable transversal differentiator for microwave photonic signal processing

Xingyuan Xu; Jiayang Wu; Thach G. Nguyen; Sai T. Chu; Brent E. Little; Roberto Morandotti; Arnan Mitchell; David J. Moss; Mehrdad Shoeiby

An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines’ power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.

Collaboration


Dive into the Jiayang Wu's collaboration.

Top Co-Authors

Avatar

Xingyuan Xu

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar

David J. Moss

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sai T. Chu

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Roberto Morandotti

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brent E. Little

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Brent E. Little

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Morandotti

Institut national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge