Jiazhu Sun
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiazhu Sun.
Journal of Integrative Plant Biology | 2010
Liyi Zhang; Dongcheng Liu; Xiaoli Guo; Wenlong Yang; Jiazhu Sun; Daowen Wang; Aimin Zhang
A major objective of quantitative trait locus (QTL) studies is to find genes/markers that can be used in breeding programs via marker assisted selection (MAS). We surveyed the QTLs for yield and yield-related traits and their genomic distributions in common wheat (Triticum aestivum L.) in the available published reports. We then carried out a meta-QTL (MQTL) analysis to identify the major and consistent QTLs for these traits. In total, 55 MQTLs were identified, of which 12 significant MQTLs were located on wheat chromosomes 1A, 1B, 2A, 2D, 3B, 4A, 4B, 4D and 5A. Our study showed that the genetic control of yield and its components in common wheat involved the important genes such as Rht and Vrn. Furthermore, several significant MQTLs were found in the chromosomal regions corresponding to several rice genomic locations containing important QTLs for yield related traits. Our results demonstrate that meta-QTL analysis is a powerful tool for confirming the major and stable QTLs and refining their chromosomal positions in common wheat, which may be useful for improving the MAS efficiency of yield related traits.
PLOS ONE | 2010
Lingli Dong; Xiaofei Zhang; Dongcheng Liu; Huajie Fan; Jiazhu Sun; Zhongjuan Zhang; Huanju Qin; Bin Li; Shanting Hao; Zhensheng Li; Daowen Wang; Aimin Zhang; Hong-Qing Ling
The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding.
BMC Genetics | 2011
Liyi Zhang; Dongcheng Liu; Xiaoli Guo; Wenlong Yang; Jiazhu Sun; Daowen Wang; Pierre Sourdille; Aimin Zhang
BackgroundIn order to help establish heterotic groups of Chinese northern wheat cultivars (lines), Diversity arrays technology (DArT) markers were used to investigate the genetic diversity and population structure of Chinese common wheat (Triticum aestivum L.).ResultsIn total, 1637 of 7000 DArT markers were polymorphic and scored with high confidence among a collection of 111 lines composed mostly of cultivars and breeding lines from northern China. The polymorphism information content (PIC) of DArT markers ranged from 0.03 to 0.50, with an average of 0.40, with P > 80 (reliable markers). With principal-coordinates analysis (PCoA) of DArT data either from the whole genome or from the B-genome alone, all lines fell into one of two major groups reflecting 1RS/1BL type (1RS/1BL and non-1RS/1BL). Evidence of geographic clustering of genotypes was also observed using DArT markers from the A genome. Cluster analysis based on the unweighted pair-group method with algorithmic mean suggested the existence of two subgroups within the non-1RS/1BL group and four subgroups within the 1RS/1BL group. Furthermore, analysis of molecular variance (AMOVA) revealed highly significant (P < 0.001) genetic variance within and among subgroups and among groups.ConclusionThese results provide valuable information for selecting crossing parents and establishing heterotic groups in the Chinese wheat-breeding program.
Theoretical and Applied Genetics | 2011
Xiaofei Zhang; Dongcheng Liu; Wenlong Yang; Kunfan Liu; Jiazhu Sun; Xiaoli Guo; Yiwen Li; Daowen Wang; Hong-Qing Ling; Aimin Zhang
Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli–tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes.
Journal of Experimental Botany | 2013
Xiaofei Zhang; Dongcheng Liu; Jianghua Zhang; Wei Jiang; Guangbin Luo; Wenlong Yang; Jiazhu Sun; Yiping Tong; Dangqun Cui; Aimin Zhang
Low-molecular-weight glutenin subunits (LMW-GS), encoded by a complex multigene family, play an important role in the processing quality of wheat flour. Although members of this gene family have been identified in several wheat varieties, the allelic variation and composition of LMW-GS genes in common wheat are not well understood. In the present study, using the LMW-GS gene molecular marker system and the full-length gene cloning method, a comprehensive molecular analysis of LMW-GS genes was conducted in a representative population, the micro-core collections (MCC) of Chinese wheat germplasm. Generally, >15 LMW-GS genes were identified from individual MCC accessions, of which 4–6 were located at the Glu-A3 locus, 3–5 at the Glu-B3 locus, and eight at the Glu-D3 locus. LMW-GS genes at the Glu-A3 locus showed the highest allelic diversity, followed by the Glu-B3 genes, while the Glu-D3 genes were extremely conserved among MCC accessions. Expression and sequence analysis showed that 9–13 active LMW-GS genes were present in each accession. Sequence identity analysis showed that all i-type genes present at the Glu-A3 locus formed a single group, the s-type genes located at Glu-B3 and Glu-D3 loci comprised a unique group, while high-diversity m-type genes were classified into four groups and detected in all Glu-3 loci. These results contribute to the functional analysis of LMW-GS genes and facilitate improvement of bread-making quality by wheat molecular breeding programmes.
Euphytica | 2005
Yong Liu; Dongcheng Liu; Haiying Zhang; Jing Wang; Jiazhu Sun; Xiaoli Guo; Aimin Zhang
Wheat microsatellite XGWM261, due to its closely linked to the dwarfing gene Rht8, has been adopted as the diagnostic molecular marker of Rht8. Screening 408 Chinese and 98 exotic varieties showed 13 allele variants in locus of XGWM261, with 6 alleles only to be found in Chinese varieties and 2 only in exotic varieties, respectively. Sequencing results of the 13 alleles revealed their absolute fragment sizes with 216, 212, 210, 206, 204, 202, 200, 196, 194, 192, 190, 174, and 164 bp, respectively. Allelic distribution analysis showed that the 204, 192, 174, and 164 bp alleles were prevailing in Chinese varieties, and the diagnostic 192 bp allele to Rht8 had a very high percentage in the Yellow and Huai River Valleys Facultative Wheat Zone than in the Northern Winter Wheat Zone in China. The GT → AC substitution at position 35 was found in 216, 200, and 174 bp alleles. Moreover, the AG insertion immediately at the end of CT-repeat region was also found in 216, 200, 174, and 164 bp alleles.
Functional & Integrative Genomics | 2012
Yuanyuan Huang; Wenlong Yang; Zhong Pei; Xiaoli Guo; Dongcheng Liu; Jiazhu Sun; Aimin Zhang
The gibberellin biosynthesis pathway is well defined in Arabidopsis and features seven key enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase, GA 3-oxidase, and GA 2-oxidase. The Arabidopsis genes were used to identify their counterparts in wheat and the TaCPS, TaKS, TaKO, and TaKAO genes were cloned from Chinese Spring wheat. In order to determine their chromosome locations, expression patterns and feedback regulations, three TaCPS genes, three TaKS genes, three TaKO genes, and three TaKAO genes were cloned from Chinese Spring wheat. They are mainly located on chromosomes 7A, 7B, 7D and 2A, 2B and 2D. The expression patterns of TaCPS, TaKS, TaKO, and TaKAO genes in wheat leaves, young spikes, peduncles, the third and forth internodes were investigated using quantitative PCR. The results showed that all the genes were constitutively expressed in wheat, but their relative expression levels varied in different tissues. They were mainly transcribed in stems, secondly in leaves and spikes, and the least in peduncles. Feedback regulation of the TaCPS, TaKS, TaKO, and TaKAO genes was not evident. These results indicate that all the genes and their homologs may play important roles in the developmental processes of wheat, but each of the homologs may function differently in different tissues or during different developmental stages.
Molecular Breeding | 2012
Aixia Li; Wenlong Yang; Xiaoli Guo; Dongcheng Liu; Jiazhu Sun; Aimin Zhang
Gibberellins (GAs) are important phytohormones in plants. GAs promote plant growth by inducing the degradation of DELLA proteins, which serve as GA signal repressors. The semi-dwarfing genes Rht-B1b and Rht-D1b, derived from the Japanese variety Norin 10, are gain-of-function mutant alleles of the reduced height-1 genes (Rht-B1 and Rht-D1) encoding wheat DELLA proteins. Wheat varieties carrying these Rht alleles are shorter and insensitive to the GA response. At the Rht-B1 loci, an alternative GA-insensitive dwarfing gene, Rht-B1e, was found in the Russian mutant of Bezostaya1, or Krasznodari 1, by breeders, but its molecular mechanism for causing dwarfism remains unknown. In this study, the Rht-B1e allele was isolated using homology-based cloning. Sequence comparison between Rht-B1e and the wild-type Rht-B1a revealed an A-to-T substitution at nucleotide position 181 in Rht-B1e, which introduced a stop codon into the DELLA domain. Alignment of deduced amino acid sequences of Rht-B1e and Rht-B1b showed that the stop codon position in Rht-B1e was earlier than that of Rht-B1b by three amino acid residues, and it was also followed closely by several methionines, which may permit translational re-initiation, as seen in Rht-B1b. Yeast two-hybrid analysis revealed that the predicted Rht-B1e proteins did not interact with the GA receptor GID1 in the presence of GA, suggesting that the stop codon mutation in the DELLA domain is the molecular cause of GA insensitivity and dwarfism conferred by Rht-B1e in wheat. Meanwhile, we developed an allele-specific PCR marker for Rht-B1e, which may facilitate the use of the Rht-B1e dwarfing gene in wheat breeding programs.
BMC Plant Biology | 2015
Guangbin Luo; Xiaofei Zhang; Yanlin Zhang; Wenlong Yang; Yiwen Li; Jiazhu Sun; Kehui Zhan; Aimin Zhang; Dongcheng Liu
BackgroundWheat (AABBDD, 2n = 6x = 42) is a major dietary component for many populations across the world. Bread-making quality of wheat is mainly determined by glutenin subunits, but it remains challenging to elucidate the composition and variation of low-molecular-weight glutenin subunits (LMW-GS) genes, the major components for glutenin subunits in hexaploid wheat. This problem, however, can be greatly simplified by characterizing the LMW-GS genes in Triticum urartu, the A-genome donor of hexaploid wheat. In the present study, we exploited the high-throughput molecular marker system, gene cloning, proteomic methods and molecular evolutionary genetic analysis to reveal the composition, variation, expression and evolution of LMW-GS genes in a T. urartu population from the Fertile Crescent region.ResultsEight LMW-GS genes, including four m-type, one s-type and three i-type, were characterized in the T. urartu population. Six or seven genes, the highest number at the Glu-A3 locus, were detected in each accession. Three i-type genes, each containing more than six allelic variants, were tightly linked because of their co-segregation in every accession. Only 2-3 allelic variants were detected for each m- and s-type gene. The m-type gene, TuA3-385, for which homologs were previously characterized only at Glu-D3 locus in common wheat and Aegilops tauschii, was detected at Glu-A3 locus in T. urartu. TuA3-460 was the first s-type gene identified at Glu-A3 locus. Proteomic analysis showed 1-4 genes, mainly i-type, expressed in individual accessions. About 62% accessions had three active i-type genes, rather than one or two in common wheat. Southeastern Turkey might be the center of origin and diversity for T. urartu due to its abundance of LMW-GS genes/genotypes. Phylogenetic reconstruction demonstrated that the characterized T. urartu might be the direct donor of the Glu-A3 locus in common wheat varieties.ConclusionsCompared with the Glu-A3 locus in common wheat, a large number of highly diverse LMW-GS genes and active genes were characterized in T. urartu, demonstrating that this progenitor might provide valuable genetic resources for LMW-GS genes to improve the quality of common wheat. The phylogenetic analysis provided molecular evidence and confirmed that T. urartu was the A-genome donor of hexaploid wheat.
PLOS ONE | 2015
Yanlin Zhang; Guangbin Luo; Dongcheng Liu; Dongzhi Wang; Wenlong Yang; Jiazhu Sun; Aimin Zhang; Kehui Zhan
Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat.