Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jichang Wang is active.

Publication


Featured researches published by Jichang Wang.


Oncotarget | 2015

Suppression of tumor angiogenesis by metformin treatment via a mechanism linked to targeting of HER2/HIF-1α/VEGF secretion axis

Jichang Wang; Guang-Yue Li; Yaochun Wang; Shouching Tang; Xin Sun; Xuefei Feng; Yan Li; Gang Bao; Pingping Li; Xiaona Mao; Maode Wang; Peijun Liu

Anti-angiogenesis is currently considered as one of the major antitumor strategies for its protective effects against tumor emergency and later progression. The anti-diabetic drug metformin has been demonstrated to significantly inhibit tumor angiogenesis based on recent studies. However, the mechanism underlying this anti-angiogenic effect still remains an enigma. In this study, we investigated metformin-induced inhibitory effect on tumor angiogenesis in vitro and in vivo. Metformin pretreatment significantly suppressed tumor paracrine signaling-induced angiogenic promotion even in the presence of heregulin (HRG)-β1 (a co-activator of HER2) pretreatment of HER2+ tumor cells. Similar to that of AG825, a specific inhibitor of HER2 phosphorylation, metformin treatment decreased both total and phosphorylation (Tyr 1221/1222) levels of HER2 protein and significantly reduced microvessel density and the amount of Fitc-conjugated Dextran leaking outside the vessel. Furthermore, our results of VEGF-neutralizing and -rescuing tests showed that metformin markedly abrogated HER2 signaling-induced tumor angiogenesis by inhibiting VEGF secretion. Inhibition of HIF-1α signaling by using RNAi or YC-1, a specific inhibitor of HIF-1α synthesis, both completely diminished mRNA level of VEGF and greatly inhibited endothelial cell proliferation promoted by HER2+ tumor cell-conditioned medium in both the absence and presence of HRG-β1 pretreatment. Importantly, metformin treatment decreased the number of HIF-1α nucleus positive cells in 4T1 tumors, accompanied by decreased microvessel density. Our data thus provides novel insight into the mechanism underlying the metformin-induced inhibition of tumor angiogenesis and indicates possibilities of HIF-1α-VEGF signaling axis in mediating HER2-induced tumor angiogenesis.


Oncotarget | 2015

MiR-208a stimulates the cocktail of SOX2 and β-catenin to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1

Xin Sun; Shiwen Jiang; Jian Liu; Huangzhen Wang; Yiwen Zhang; Shou Ching Tang; Jichang Wang; Ning Du; Chongwen Xu; Chenguang Wang; Sida Qin; Jia Zhang; Dapeng Liu; Yunfeng Zhang; Xiaojun Li; Jiansheng Wang; Jun Dong; Xin Wang; Shaohua Xu; Zhen Tao; Fei Xu; Jie Zhou; Tao Wang; Hong Ren

MiR-208a stimulates cardiomyocyte hypertrophy, fibrosis and β-MHC (β-myosin heavy chain) expression, being involved in cardiovascular diseases. Although miR-208a is known to play a role in cardiovascular diseases, its role in cancer and cancer stem cells (CSCs) remains uncertain. We identified an inverse relationship between miR-208a and let-7a in breast cancer specimens, and found that SOX2, β-catenin and LIN28 are highly expressed in patients with advanced breast cancer opposed to lesser grades. Further, we isolated ALDH1+ CSCs from ZR75–1 and MDA-MB-231 (MM-231) breast cancer cell lines to test the role of miR-208a in breast CSCs (BrCSCs). Our studies showed that overexpression of miR-208a in these cells strongly promoted the proportion of ALDH1+ BrCSCs and continuously stimulated the self-renewal ability of BrCSCs. By using siRNAs of SOX2 and/or β-catenin, we found that miR-208a increased LIN28 through stimulation of both SOX2 and β-catenin. The knockdown of either SOX2 or β-catenin only partially attenuated the functions of miR-208a. Let-7a expression was strongly inhibited in miR-208a overexpressed cancer cells, which was achieved by miR-208a induction of LIN28, and the restoration of let-7a significantly inhibited the miR-208a induction of the number of ALDH1+ cells, inhibiting the propagations of BrCSCs. In let-7a overexpressed ZR75–1 and MM-231 cells, DICER1 activity was significantly inhibited with decreased miR-208a. Let-7a failed to decrease miR-208a expression in ZR75–1 and MM-231 cells with DICER1 knockdown. Our research revealed the mechanisms through which miR-208a functioned in breast cancer and BrCSCs, and identified the miR-208a-SOX2/β-catenin-LIN28-let-7a-DICER1 regulatory feedback loop in regulations of stem cells renewal.


Journal of Cellular and Molecular Medicine | 2018

Metformin's antitumour and anti‐angiogenic activities are mediated by skewing macrophage polarization

Jichang Wang; Xin Sun; Qiang Ma; Gui-Feng Fu; Long-Long Cong; Hong Zhang; De-Fu Fan; Jun Feng; Shao-Ying Lu; Jian-Lin Liu; Guang-Yue Li; Peijun Liu

Beneficial effects of metformin on cancer risk and mortality have been proved by epidemiological and clinical studies, thus attracting research interest in elucidating the underlying mechanisms. Recently, tumour‐associated macrophages (TAMs) appeared to be implicated in metformin‐induced antitumour activities. However, how metformin inhibits TAMs‐induced tumour progression remains ill‐defined. Here, we report that metformin‐induced antitumour and anti‐angiogenic activities were not or only partially contributed by its direct inhibition of functions of tumour and endothelial cells. By skewing TAM polarization from M2‐ to M1‐like phenotype, metformin inhibited both tumour growth and angiogenesis. Depletion of TAMs by clodronate liposomes eliminated M2‐TAMs‐induced angiogenic promotion, while also abrogating M1‐TAMs‐mediated anti‐angiogenesis, thus promoting angiogenesis in tumours from metformin treatment mice. Further in vitro experiments using TAMs‐conditioned medium and a coculture system were performed, which demonstrated an inhibitory effect of metformin on endothelial sprouting and tumour cell proliferation promoted by M2‐polarized RAW264.7 macrophages. Based on these results, metformin‐induced inhibition of tumour growth and angiogenesis is greatly contributed by skewing of TAMs polarization in microenvironment, thus offering therapeutic opportunities for metformin in cancer treatment.


Oncotarget | 2017

Suppression of hypoxia-induced excessive angiogenesis by metformin via elevating tumor blood perfusion

Jichang Wang; Guang-Yue Li; Pingping Li; Xin Sun; Weiming Li; Yan Li; Shaoying Lu; Peijun Liu

The anti-diabetic metformin has been demonstrated to be effective in suppression of tumor progression via multiple mechanisms, in which angiogenic inhibition is involved. Hypoxia is a common feather of malignant tumor and promotes angiogenesis via induction of pro-angiogenic factors. However, the effect of metformin on tumor hypoxia and the association with angiogenic inhibition are still unclear. In the current study, we investigated the effects of metformin on both tumor blood perfusion and hypoxia-induced excessive angiogenesis. In the tumor region adjacent to necrosis, aberrantly excessive angiogenesis resulted from hypoperfusion-induced intense hypoxia and greatly contributed to the high average levels of both microvessel density and vascular branch density. Metformin administration increased the percentage of lectin-perfused vessels and reduced hypoxyprobe-positive area. This metformin-induced amelioration of hypoxia was accompanied by a significant reduction in expressions of both HIF-1α and angiogenesis-associated factors (AAFs). Consequently, inhibited excessive angiogenesis in hypoxic peri-necrotic region was observed in metformin-treated tumor. Further stable knockdown of HIF-1α abrogated hypoxia-induced AAFs in vitro and reduced both microvessel density and area of fitc-conjugated dextran that leaked outside the vascular lumen. Taken together, metformin ameliorated tumor hypoxia and restrained HIF-1α-induced expressions of AAFs through elevating tumor blood perfusion, thus suppressing the excessive tumor angiogenesis.The anti-diabetic metformin has been demonstrated to be effective in suppression of tumor progression via multiple mechanisms, in which angiogenic inhibition is involved. Hypoxia is a common feather of malignant tumor and promotes angiogenesis via induction of pro-angiogenic factors. However, the effect of metformin on tumor hypoxia and the association with angiogenic inhibition are still unclear. In the current study, we investigated the effects of metformin on both tumor blood perfusion and hypoxia-induced excessive angiogenesis. In the tumor region adjacent to necrosis, aberrantly excessive angiogenesis resulted from hypoperfusion-induced intense hypoxia and greatly contributed to the high average levels of both microvessel density and vascular branch density. Metformin administration increased the percentage of lectin-perfused vessels and reduced hypoxyprobe-positive area. This metformin-induced amelioration of hypoxia was accompanied by a significant reduction in expressions of both HIF-1α and angiogenesis-associated factors (AAFs). Consequently, inhibited excessive angiogenesis in hypoxic peri-necrotic region was observed in metformin-treated tumor. Further stable knockdown of HIF-1α abrogated hypoxia-induced AAFs in vitro and reduced both microvessel density and area of fitc-conjugated dextran that leaked outside the vascular lumen. Taken together, metformin ameliorated tumor hypoxia and restrained HIF-1α-induced expressions of AAFs through elevating tumor blood perfusion, thus suppressing the excessive tumor angiogenesis.


PLOS ONE | 2017

MicroRNA-93 promotes proliferation and metastasis of gastric cancer via targeting TIMP2

Hao Guan; Weiming Li; Yuanyuan Li; Jichang Wang; Yan Li; Yanan Tang; Shaoying Lu

MicroRNAs (miRNAs) are important regulators of pathobiological processes in various cancer. In the present study, we demonstrated that miR-93 expression was significantly up-regulated in gastric cancer tissues compared with that in matched normal mucosal tissues. High expression of miR-93 was significantly associated with lymph node metastasis and tumor-node-metastasis (TNM) stage. Functionally, ectopic expression of miR-93 promoted cell proliferation, migration, invasion, EMT phenotypes, and repressed apoptosis and G1 cell cycle arrest in vitro, and promoted tumor formation in vivo. We further identified that tissue inhibitor of metalloproteinase 2 (TIMP2) was a direct target of miR-93 by using luciferase reporter assay, qRT-PCR, and immunoblotting assay. Furthermore, knockdown of TIMP2 with specific siRNA showed similar oncogenic effects in gastric cancer cells with that transfected with miR-93 mimics. Our findings indicated that miR-93 serves as a tumor promoter in human gastric carcinogenesis by targeting TIMP2, suggesting that miR-93 might be a promising biomarker and therapeutic target for treatment of gastric cancer.


Oncotarget | 2017

MiR-129 blocks estrogen induction of NOTCH signaling activity in breast cancer stem-like cells

Guodong Xiao; Xiang Li; Gang Li; Boxiang Zhang; Chongwen Xu; Sida Qin; Ning Du; Jichang Wang; Shou Ching Tang; Jing Zhang; Hong Ren; Ke Chen; Xin Sun

Stem-like cells in tumor group featured the major role in the chemotherapy resistance of breast cancer, and the reduction of stem-like cells helped to perish the tumor when receiving chemotherapy. Smaller stem cells number indicated better therapeutic effect in vitro and in clinics, but how did miR-129 and Notch signaling function in breast cancer stem-like cells (BrCSCs) were unclear yet. Through using sphere forming assay and FACS sorting, we found that miR-129 decreased the proportion of stem-like cells in breast cancer cells. Results further indicated that miR-129 degraded the Estrogen Receptor 1 (ESR1) mRNA through a post-translational manner and contributed to the decline of stem-like cells number, preventing tumor regeneration. Cyclin d1 and DICER 1 were proved to promote Let-7 maturation, and in present study, we proved that miR-129 exhibited inhibition on ESR1 and halted the cyclin d1/DICER 1 sustaining of Let-7, which consequently released the Let-7 degradation of NUMB. The restoration of suppressive NUMB by upregulating miR-129 resulted in NOTCH signaling inhibition. In conclusion, we demonstrated the negative regulation of miR-129 on NOTCH signaling activation in BrCSCs’ renewal, which was achieved via continuous suppression on cyclin d1/DICER1 sustaining of Let-7 level, and eventually rescued the targeted inhibition of NUMB. The miR-129/ESR1 signaling played pivotal role in controlling DICER1/Let-7/NOTCH cascade via cyclin d1, revealing the novel mechanism of dual Let-7 in non-coding genes network.


Experimental and Therapeutic Medicine | 2017

Analysis of risk factors for post‑operative complications and prognostic predictors of disease recurrence following definitive treatment of patients with esophageal cancer from two medical centers in Northwest China

Jichang Wang; Boxiang Zhang; Jinying Meng; Guodong Xiao; Xiang Li; Gang Li; Sida Qin; Ning Du; Jia Zhang; Jing Zhang; Chongwen Xu; Shou Ching Tang; Rui Liang; Hong Ren; Xin Sun

Evaluating the clinicopathological features of patients receiving definitive treatment for esophageal cancer may facilitate the identification of patterns and factors associated with post-operative complications, and enable the development of a surveillance strategy for surviving patients at a higher risk of disease recurrence. In the present study, clinical data from 579 patients with esophageal cancer that underwent radical resection of esophagus were collected. These patients were admitted to two medical centers in Northwest China, and information regarding the presence or absence of basic chronic diseases and post-operative results were retrospectively analyzed. The level of selected stem cell markers, including aldehyde dehydrogenase 1, CD133, integrin subunit α 6, integrin subunit β 4 and T-cell factor-4, were determined in esophageal cancer tissue samples in order to determine whether these markers may be useful predictors of disease prognosis and recurrence. Post-operative complications in patients receiving radical resection of the esophagus included respiratory system complications, cardiovascular abnormalities and esophageal anastomotic fistulae. Diabetes, basic respiratory disease and lower pre-surgical serum albumin levels were observed to be individual risk factors associated with post-operative complications, including respiratory system complications of acute respiratory failure and pulmonary infection, cardiovascular abnormalities of atrial fibrillation and arrhythmia, as well as the development of esophageal anastomotic fistulae. Diagnosis of esophageal cancer at later stage was significantly correlated with anastomotic fistula. Molecular detection of stem cell markers for prognosis prediction was achieved by immunohistochemical and immunofluorescence staining assays. The results demonstrated that the presence of stem-like cells in cancer tissues was associated with poor disease prognosis and a high recurrence ratio. In conclusion, the results of the current study suggested that post-operative complications were more likely to occur in patients with diabetes, basic respiratory disease or lower serum albumin levels prior to surgery. Therefore, sufficient intensive peri-operative care, rigorous operative risk assessments, and the selection of the patients with early or mid-stage esophageal cancer, may decrease the risk of post-surgical complications in patients receiving radical resection of the esophagus. In addition, a high ratio of esophageal cancer stem-like cells was associated with cancer recurrence. These results suggest that an intensive surveillance strategy should be implemented in order to facilitate early detection of disease recurrence and improve the clinical management of these patients post-surgery.


Cancer Investigation | 2017

Clinical Application of Detecting 21-Gene Recurrence Score in Predicating Prognosis and Therapy Response of Patients with Breast Cancer from Two Medical Centers

Guodong Xiao; Jinying Meng; Jing Zhang; Gang Li; Ning Du; Sida Qin; Jichang Wang; Chongwen Xu; Hong Ren; Shou Ching Tang; Xin Sun

ABSTRACT To determine the most suitable strategy in treating patients with invasive breast cancer from Northwest China. Lower recurrence score (RS) correlated with lower recurrence ratio. Patients having a medium-high 21-gene RS who received adjuvant therapy presented lower recurrence risk. Younger patients having RS results (⩾31) tended to accept adjuvant therapy more often, however, those having intermediate RS results were inclined to wait and did not receive chemotherapy. These results suggested that RS-based precision medicine will allow individualized diagnosis and treatment, resulting in better outcomes and preserved medical resources.


Cancer Science | 2018

Activation of AMPK by simvastatin inhibited breast tumor angiogenesis via impeding HIF-1α-induced pro-angiogenic factor

Jichang Wang; Xiong-Xiong Li; Xin Sun; Guang-Yue Li; Jing-Lan Sun; Yuan-Peng Ye; Long-Long Cong; Weiming Li; Shaoying Lu; Jun Feng; Peijun Liu

Substantial data from preclinical studies have revealed the biphasic effects of statins on cardiovascular angiogenesis. Although some have reported the anti‐angiogenic potential of statins in malignant tumors, the underlying mechanism remains poorly understood. The aim of this study is to elucidate the mechanism by which simvastatin, a member of the statin family, inhibits tumor angiogenesis. Simvastatin significantly suppressed tumor cell‐conditioned medium‐induced angiogenic promotion in vitro, and resulted in dose‐dependent anti‐angiogenesis in vivo. Further genetic silencing of hypoxia‐inducible factor‐1α (HIF‐1α) reduced vascular endothelial growth factor and fibroblast growth factor‐2 expressions in 4T1 cells and correspondingly ameliorated HUVEC proliferation facilitated by tumor cell‐conditioned medium. Additionally, simvastatin induced angiogenic inhibition through a mechanism of post‐transcriptional downregulation of HIF‐1α by increasing the phosphorylation level of AMP kinase. These results were further validated by the fact that 5‐aminoimidazole‐4‐carboxamide ribonucleotide reduced HIF‐1α protein levels and ameliorated the angiogenic ability of endothelial cells in vitro and in vivo. Critically, inhibition of AMPK phosphorylation by compound C almost completely abrogated simvastatin‐induced anti‐angiogenesis, which was accompanied by the reduction of protein levels of HIF‐1α and its downstream pro‐angiogenic factors. These findings reveal the mechanism by which simvastatin induces tumor anti‐angiogenesis, and therefore identifies the target that explains the beneficial effects of statins on malignant tumors.


Journal of Vascular and Interventional Radiology | 2018

A Comparison of Concomitant Tributary Laser Ablation and Foam Sclerotherapy in Patients Undergoing Truncal Endovenous Laser Ablation for Lower Limb Varicose Veins

Jichang Wang; Yan Li; Guang-Yue Li; Yi Xiao; Weiming Li; Qiang Ma; Jian-Lin Liu; Shaoying Lu

PURPOSE To compare outcomes of patients who received simultaneous tributary endovenous laser ablation (EVLA) or foam sclerotherapy (FS) with EVLA of the great saphenous vein (GSV) trunk. METHODS AND MATERIALS This study recruited 418 patients (542 legs) with diagnosed varicose veins. Patients in the EVLA/FS group (255 patients, 327 legs) received concomitant FS for the tributaries with truncal lasering. For the EVLA-alone group (163 patients, 215 legs), tributaries (8W) were ablated with EVLA in addition to the GSV trunk (14W). Complications, Aberdeen Varicose Vein Questionnaire (AVVQ), EuroQol Group 5-Dimension Self-Report Questionnaire (EQ-5D), numerical rating scale (NRS) scores, and condition of residual varicosities were assessed at 3 days, 4 weeks, and 6 months after procedure. All residual varicosities were identified and treated with a staged FS at 6 months. RESULTS Except for ecchymosis, incidence of other complications was not significantly different between both groups at 6 months. Pain NRS scores of the EVLA/FS group were remarkably elevated at 4 weeks and then, at 6 months, declined to a level similar to the EVLA-alone group. The EVLA/FS group exhibited more significant improvement in both AVVQ and EQ-5D scales than the EVLA group at 6 months, while exhibiting poor improvement at 4 weeks. The EVLA/FS group had a significantly lower rate of residual varicosities than the EVLA group, thus reducing the need for the staged FS. CONCLUSIONS These results confirm the feasibility and safety of simultaneous tributary EVLA and FS. In addition, they indicate better early quality-of-life improvement and a reduced reoperation rate of simultaneously combined truncal EVLA and tributary FS.

Collaboration


Dive into the Jichang Wang's collaboration.

Top Co-Authors

Avatar

Xin Sun

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Chongwen Xu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Hong Ren

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Guodong Xiao

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Sida Qin

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Guang-Yue Li

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Ning Du

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Shaoying Lu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Weiming Li

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Yan Li

Xi'an Jiaotong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge