Jichao Deng
Jilin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jichao Deng.
Scientific Reports | 2016
Qingyan Lv; Lin Yuan; Jichao Deng; Mao Chen; Yong Wang; Jian Zeng; Zhanjun Li; Liangxue Lai
CRISPR/Cas9 has been widely used in generating site-specific genetically modified animal models. Myostatin (MSTN) is a negative regulator of muscle mass, related to muscle growth and differentiation. The knockout of MSTN with the desired phenotype of double muscle has been successfully generated in mice, goats, pigs and cattle, but not in rabbits. In this study, the MSTN knockout (KO) rabbits were generated by co-injection of Cas9 mRNA and sgRNA into zygotes. The typical phenotype of double muscle with hyperplasia or hypertrophy of muscle fiber was observed in MSTN KO rabbits. Furthermore, a similar phenotype was found in the F1 generation, suggesting that the mutation of MSTN could be stably inherited in the MSTN KO rabbits. In summary, we have successfully generated MSTN KO rabbits using CRISPR/Cas9 system with high efficiency, which is a reliable and effective animal model for the study of muscle development and related diseases.
Scientific Reports | 2016
Lin Yuan; Tingting Sui; Mao Chen; Jichao Deng; Yongye Huang; Jian Zeng; Qingyan Lv; Yuning Song; Zhanjun Li; Liangxue Lai
Cataracts are the leading cause of vision loss in the world, although surgical treatment can restore vision in cataract patients. Until now, there have been no adequate animal models for in vivo studies of artificial lens safety and drug interactions. Genetic studies have demonstrated that GJA8 is involved in maintaining lens opacity and proper lens development. In this study, a cataract model with GJA8 gene knockout was developed via co-injection of Cas9/sgRNA mRNA into rabbit zygotes. Our results showed that gene mutation efficiency in the GJA8 locus reached 98.7% in embryos and 100% in pups, demonstrating that the Cas9/sgRNA system is a highly efficient tool for gene editing in rabbits. In agreement with other studies, our genetic and histology results showed that impaired GJA8 function caused microphthalmia, small lens size and cataracts. In summary, our novel rabbit model of cataracts will be an important drug-screening tool for cataract prevention and treatment.
Scientific Reports | 2017
Yuning Song; Yuxin Xu; Jichao Deng; Mao Chen; Yi Lu; Yong Wang; Haobin Yao; Lina Zhou; Zhiquan Liu; Liangxue Lai; Zhanjun Li
The 3′ untranslated regions (UTRs), located at the end of mRNA molecules, are believed to play a role in RNA replication and/or protein translation. Mutations in the tyrosinase (Tyr) gene are known to cause recessive albinism in humans and other species. In this study, to test whether the CRISPR/Cas9 system works on the mutation of the UTRs regulatory region in rabbit, the 3′ UTR of the rabbit Tyr gene was deleted by a dual sgRNA directed CRISPR/Cas9 system. As expected, gray coat color and reduced melanin in hair follicles and irises was found in the mutated rabbit, thus increasing confidence in the association of the mutation of the Tyr 3′ UTR with graying in rabbit. The graying phenotype was also found in the F1 generation, suggesting that the mutated allele can be stably inherited by the offspring. Thus, we provide the first evidence that reduced melanin and graying can be caused by deletion of the Tyr 3′ UTR in rabbits. Additionally, CRISPR/Cas9-mediated large fragment deletions can facilitate genotype to phenotype studies of UTRs or non-coding RNAs in future.
Nature Communications | 2018
Zhiquan Liu; Mao Chen; Siyu Chen; Jichao Deng; Yuning Song; Liangxue Lai; Zhanjun Li
Cytidine base editors (CBEs) and adenine base editors (ABEs), composed of a cytidine deaminase or an evolved adenine deaminase fused to Cas9 nickase, enable the conversion of C·G to T·A or A·T to G·C base pair in organisms, respectively. Here, we show that BE3 and ABE7.10 systems can achieve a targeted mutation efficiency of 53–88% and 44–100%, respectively, in both blastocysts and Founder (F0) rabbits. Meanwhile, this strategy can be used to precisely mimic human pathologies by efficiently inducing nonsense or missense mutations as well as RNA mis-splicing in rabbit. In addition, the reduced frequencies of indels with higher product purity are also determined in rabbit blastocysts by BE4-Gam, which is an updated version of the BE3 system. Collectively, this work provides a simple and efficient method for targeted point mutations and generation of disease models in rabbit.Base editors can make targeted changes without inducing a double-stranded break. Here, the authors apply the BE3 and ABE7.10 systems to rabbit to create highly efficient targeted base substitutions and various mutation types, and show reduced frequency of undesired by-products with the updated BE4-Gam system.
Investigative Ophthalmology & Visual Science | 2017
Lin Yuan; Haobin Yao; Yuxin Xu; Mao Chen; Jichao Deng; Yuning Song; Tingting Sui; Yong Wang; Yongye Huang; Zhanjun Li; Liangxue Lai
Purpose The present study aimed to investigate the role of the αA-crystallin gene in inducing congenital cataracts in rabbits and to construct a novel animal model for characterization and pathologic analysis of congenital cataracts for future research. Methods We generated αA-crystallin gene knockout rabbits with congenital cataracts by coinjection of Cas9 mRNA and sgRNA into zygotes. Cataract phenotypes were investigated in a repeated study of 19 F0-generation and 11 F1-generation rabbits with αA-crystallin gene mutations. Heritability was analyzed by PCR, sequencing, slim lamp, hematoxylin eosin staining, immunohistochemistry, and Western blot. Results We found αA-crystallin gene mutations in all 19 F0-generation pups (100%) with indel mutations in the αA-crystallin gene ranging from 3 to 52 bp. Off-target assay revealed that none of the potential off-target sites exhibited mutations, demonstrating that off-target mutagenesis was not induced by cytoplasmic microinjection of in vitro-transcribed Cas9 mRNA. Slim lamp assay revealed that 15 of 19 live pups (78.9%) exhibited typical phenotypes, including congenital cataracts, microphthalmia, obscurity, and early atrophy of the lens, and failed differentiation of lens fibers. Histologic hematoxylin and eosin staining showed that αA-crystallin gene knockout rabbits exhibited smaller lenses. Production of the αA-crystallin protein was determined to be dramatically reduced in αA-crystallin gene knockout rabbits. We induced αA-crystallin gene mutations and phenotypes in F1-generation rabbits. Conclusions Our data suggest that CRISPR/Cas9-mediated mutation of the αA-crystallin gene in rabbits recapitulates phenotypes of congenital cataracts, microphthalmia, obscurity, and early atrophy of the lens, and failed differentiation of lens fibers. These findings suggest the possibility of a new animal model of congenital cataracts, which should be used to further investigate the association between mutations in αA-crystallin gene and congenital cataracts in humans.
Oncotarget | 2017
Yuning Song; Tingjun Liu; Yong Wang; Jichao Deng; Mao Chen; Lin Yuan; Yi Lu; Yuxin Xu; Haobin Yao; Zhanjun Li; Liangxue Lai
Sex-determining region Y is a crucial gene that initiates male sex determination in mammals. Mutations of the Sp1-binding site in the 5′ flanking region of SRY are associated with clinical male-to-female sex reversal syndrome, although such occurrences are rare and, until now, have not been reported in animal models. In this study, we mutated Sp1-binding sites in the 5′ flanking region of the rabbit SRY gene using the CRISPR/Cas9 system. As expected, the SRY-Sp1 knockout rabbits had female external and internal genitalia and exhibited normal female copulatory behaviors, but they were infertile, and the adults displayed reduced follicles. Interestingly, we successfully obtained offspring from sex-reversed SRY-Sp1 knockout rabbits using embryo transfer. In summary, our study demonstrates that Sp1 is a major regulator in SRY gene transcription, and mutations of the Sp1 binding sites (Sp1-B and Sp1-C) in the 5′ flanking region of SRY induce sex reversal in rabbits, which can be used as targets for clinical research of male-to-female sex reversal syndrome. Additionally, we provide the first evidence that sex reversal syndrome patients have the potential to become pregnant with the use of embryo transfer.
Gene | 2018
Huan Liu; Tingting Sui; Di Liu; Tingjun Liu; Mao Chen; Jichao Deng; Yuanyuan Xu; Zhanjun Li
The CRISPR/Cas9 system is a highly efficient and convenient genome editing tool, which has been widely used for single or multiple gene mutation in a variety of organisms. Disruption of multiple homologous genes, which have similar DNA sequences and gene function, is required for the study of the desired phenotype. In this study, to test whether the CRISPR/Cas9 system works on the mutation of multiple homologous genes, a single guide RNA (sgRNA) targeting three fucosyltransferases encoding genes (FUT1, FUT2 and SEC1) was designed. As expected, triple gene mutation of FUT1, FUT2 and SEC1 could be achieved simultaneously via a sgRNA mediated CRISPR/Cas9 system. Besides, significantly reduced serum fucosyltransferases enzymes activity was also determined in those triple gene mutation rabbits. Thus, we provide the first evidence that multiple homologous genes knockout (KO) could be achieved efficiently by a sgRNA mediated CRISPR/Cas9 system in mammals, which could facilitate the genotype to phenotype studies of homologous genes in future.
Animal Genetics | 2016
Lin Yuan; Liangxue Lai; Feifei Duan; Mao Chen; Jichao Deng; Zhanjun Li
Maternally imprinted genes of makorin ring finger protein 3 (MKRN3) and nucleosome assembly protein 1-like 5 (NAP1L5) have been identified in many species but have not yet been investigated in rabbits. In this study, a polymorphism-based approach and bisulfite-sequencing PCR (BSP) were used to determine the imprinting status of MKRN3 and NAP1L5 in rabbits. The single nucleotide polymorphism (SNP)-based sequencing results demonstrated that MKRN3 and NAP1L5 were expressed preferentially from the paternal allele. Furthermore, the BSP results showed the gamete-specific methylation patterns and hemimethylation in brain and full methylation in liver were observed in MKRN3 and NAP1L5 respectively. Thus, we provide the first evidence that MKRN3 and NAP1L5 are paternally expressed genes and that the CpG islands located in the promoter region may be the putative differentially methylated region of these two genes in rabbits.
The FASEB Journal | 2018
Jichao Deng; Mao Chen; Zhiquan Liu; Yuning Song; Tingting Sui; Liangxue Lai; Zhanjun Li
Pure hair and nail ectodermal dysplasia 9 (ECTD‐9) is an autosomal recessive genetic disease caused by mutation of HOXC13 and is characterized by hypotrichosis and nail dystrophy in humans. Unlike patients with ECTD‐9, Hoxc13‐mutated mice and pigs do not faithfully recapitulate the phenotype of hypotrichosis, so there is a limited understanding of the molecular mechanism of Hoxc13‐mediated hypotrichosis in animal models and clinically. Here, the homozygous Hoxc13−/− rabbits showed complete loss of hair on the head and dorsum, whereas hypotrichosis in the limbs and tail were determined in the Hoxc13−/− rabbits. In addition, reduced hair follicles (HFs) while the enlarged and increased number of sebaceous glands (SGs) were also found in the Hoxc13−/− rabbits, showing that the disrupted balance between HFs and SGs may respond to hypotrichosis of ECTD‐9 in an animal model and clinically. Therefore, our findings demonstrate that Hoxc13−/− rabbits can be used as a model for human ECTD‐9, especially to understand the pathologic mechanism of hypotrichosis. Moreover, the disrupted balance between HFs and SGs, especially in the Hoxc13−/− rabbits, can be used as an ideal animal model for dermatology ailments, such as acne and hypotrichosis, in preclinical studies.—Deng, J., Chen, M., Liu, Z., Song, Y., Sui, T., Lai, L., Li, Z. The disrupted balance between hair follicles and sebaceous glands in Hoxc13‐ablated rabbits. FASEB J. 33, 1226–1234 (2019). www.fasebj.org
Genome Biology | 2018
Tingting Sui; Yuning Song; Zhiquan Liu; Mao Chen; Jichao Deng; Yuanyuan Xu; Liangxue Lai; Zhanjun Li
In previous studies, CRISPR/Cas9 was shown to induce unexpected exon skipping; however, the mechanism by which this phenomenon is triggered is controversial. By analyzing 22 gene-edited rabbit lines generated using CRISPR/Cas9, we provide evidence of exon skipping at high frequency in premature termination codon-mutated rabbits but not in the rabbits with a premature termination codon mutation in exon 1 rabbits with non-frameshift or missense mutations. Our results suggest that CRISPR-mediated exon skipping depends on premature termination codon mutation-induced nonsense-associated altered splicing.