Jichao Zhao
University of Auckland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jichao Zhao.
IEEE Transactions on Medical Imaging | 2013
Oleg Aslanidi; Theodora Nikolaidou; Jichao Zhao; Bruce H. Smaill; Stephen H. Gilbert; Arun V. Holden; Tristan Lowe; Philip J. Withers; Robert S. Stephenson; Jonathan C. Jarvis; Jules C. Hancox; Mark R. Boyett; Henggui Zhang
Micro-computed tomography (micro-CT) has been widely used to generate high-resolution 3-D tissue images from small animals nondestructively, especially for mineralized skeletal tissues. However, its application to the analysis of soft cardiovascular tissues has been limited by poor inter-tissue contrast. Recent ex vivo studies have shown that contrast between muscular and connective tissue in micro-CT images can be enhanced by staining with iodine. In the present study, we apply this novel technique for imaging of cardiovascular structures in canine hearts. We optimize the method to obtain high-resolution X-ray micro-CT images of the canine atria and its distinctive regions-including the Bachmanns bundle, atrioventricular node, pulmonary arteries and veins-with clear inter-tissue contrast. The imaging results are used to reconstruct and segment the detailed 3-D geometry of the atria. Structure tensor analysis shows that the arrangement of atrial fibers can also be characterized using the enhanced micro-CT images, as iodine preferentially accumulates within the muscular fibers rather than in connective tissues. This novel technique can be particularly useful in nondestructive imaging of 3-D cardiac architectures from large animals and humans, due to the combination of relatively high speed ( ~ 1 h/per scan of the large canine heart) and high voxel resolution (36 μm) provided. In summary, contrast micro-CT facilitates fast and nondestructive imaging and segmenting of detailed 3-D cardiovascular geometries, as well as measuring fiber orientation, which are crucial in constructing biophysically detailed computational cardiac models.
Circulation-arrhythmia and Electrophysiology | 2012
Jichao Zhao; Timothy D. Butters; Henggui Zhang; Andrew J. Pullan; Ian J. LeGrice; Gregory B. Sands; Bruce H. Smaill
Background— Computer models that capture key features of the heterogeneous myofiber architecture of right and left atria and interatrial septum provide a means of investigating the mechanisms responsible for atrial arrhythmia. The data necessary to implement such models have not previously been available. The aims of this study were to characterize surface geometry and myofiber architecture throughout the atrial chambers and to investigate the effects of this structure on atrial activation. Methods and Results— Atrial surface geometry and myofiber orientations were reconstructed in 3D at 50×50×50-&mgr;m3 resolution from serial images acquired throughout the sheep atrial chambers. Myofiber orientations were determined by Eigen-analysis of the structure tensor. These data have been incorporated into an anatomic model that provides the first quantitative representation of myofiber architecture throughout the atrial chambers. By simulating activation on this 3D structure, we have confirmed the roles of specialized myofiber tracts such as the crista terminalis, pectinate muscles, and the Bachman bundle on the spread of activation from the sinus node. We also demonstrate how the complex myocyte arrangement in the posterior left atrium contributes to activation time dispersion adjacent to the pulmonary veins and increased vulnerability to rhythm disturbance generated by ectopic stimuli originating in the pulmonary vein sleeves. Conclusions— We have developed a structurally detailed, image-based model of atrial anatomy that provides deeper understanding of the role that myocyte architecture plays in normal and abnormal atrial electric function.Background— Computer models that capture key features of the heterogeneous myofiber architecture of right and left atria and interatrial septum provide a means of investigating the mechanisms responsible for atrial arrhythmia. The data necessary to implement such models have not previously been available. The aims of this study were to characterize surface geometry and myofiber architecture throughout the atrial chambers and to investigate the effects of this structure on atrial activation. Methods and Results— Atrial surface geometry and myofiber orientations were reconstructed in 3D at 50×50×50-μm3 resolution from serial images acquired throughout the sheep atrial chambers. Myofiber orientations were determined by Eigen-analysis of the structure tensor. These data have been incorporated into an anatomic model that provides the first quantitative representation of myofiber architecture throughout the atrial chambers. By simulating activation on this 3D structure, we have confirmed the roles of specialized myofiber tracts such as the crista terminalis, pectinate muscles, and the Bachman bundle on the spread of activation from the sinus node. We also demonstrate how the complex myocyte arrangement in the posterior left atrium contributes to activation time dispersion adjacent to the pulmonary veins and increased vulnerability to rhythm disturbance generated by ectopic stimuli originating in the pulmonary vein sleeves. Conclusions— We have developed a structurally detailed, image-based model of atrial anatomy that provides deeper understanding of the role that myocyte architecture plays in normal and abnormal atrial electric function.
Circulation Research | 2013
Bruce H. Smaill; Jichao Zhao; Mark L. Trew
Impulse propagation in the heart depends on the excitability of individual cardiomyocytes, impulse transmission between adjacent myocytes, and the 3-dimensional arrangement of those cells. Here, we review the role of each of these factors in normal and aberrant cardiac electric activation, with particular emphasis on the effects of 3-dimensional myocyte architecture at the tissue scale. The analysis draws on findings from in vivo and in vitro experiments, as well as biophysically based computer models that have been used to integrate and interpret these experimental data. It indicates that discontinuous arrangement of myocytes and extracellular connective tissue at the tissue scale can give rise to current source-to-sink mismatch, spatiotemporal distribution of refractoriness, and rate-sensitive electric instability, which contribute to the initiation and maintenance of reentrant cardiac arrhythmia. This exacerbates the risk of rhythm disturbance associated with heart disease. We conclude that structure-based, multiscale computer models that incorporate accurate information about local cellular electric activity provide a powerful platform for investigating the basis of reentrant cardiac arrhythmia. However, it is important that these models capture key features of structure and related electric function at the tissue scale.
Journal of Cardiovascular Electrophysiology | 2009
Jichao Zhao; Mark L. Trew; Ian J. LeGrice; Bruce H. Smaill; Andrew J. Pullan
Introduction: Atrial fibrillation is prevalent in the elderly and contributes to mortality in congestive heart failure. Development of computer models of atrial electrical activation that incorporate realistic structures provides a means of investigating the mechanisms that initiate and maintain reentrant atrial arrhythmia. As a step toward this, we have developed a model of the right atrial appendage (RAA) including detailed geometry of the pectinate muscles (PM) and crista terminalis (CT) with high spatial resolution, as well as complete fiber architecture.
IEEE Transactions on Medical Imaging | 2013
Jichao Zhao; Timothy D. Butters; Henggui Zhang; Ian J. LeGrice; Gregory B. Sands; Bruce H. Smaill
Computer models provide a powerful platform for investigating mechanisms that underlie atrial rhythm disturbances. We have used novel techniques to build a structurally-detailed, image-based model of 3-D atrial anatomy. A volume image of the atria from a normal sheep heart was acquired using serial surface macroscopy, then smoothed and down-sampled to 50 μm3 resolution. Atrial surface geometry was identified and myofiber orientations were estimated throughout by eigen-analysis of the 3-D image structure tensor. Sinus node, crista terminalis, pectinate muscle, Bachmans bundle, and pulmonary veins were segmented on the basis of anatomic characteristics. Heterogeneous electrical properties were assigned to this structure and electrical activation was simulated on it at 100 μm3 resolution, using both biophysically-detailed and reduced-order cell activation models with spatially-varying membrane kinetics. We confirmed that the model reproduced key features of the normal spread of atrial activation. Furthermore, we demonstrate that vulnerability to rhythm disturbance caused by structural heterogeneity in the posterior left atrium is exacerbated by spatial variation of repolarization kinetics across this region. These results provide insight into mechanisms that may sustain paroxysmal atrial fibrillation. We conclude that image-based computer models that incorporate realistic descriptions of atrial myofiber architecture and electrophysiologic properties have the potential to analyse and identify complex substrates for atrial fibrillation.
Frontiers in Physiology | 2015
Thomas A. Csepe; Anuradha Kalyanasundaram; Brian J. Hansen; Jichao Zhao; Vadim V. Fedorov
Heart rhythm is initialized and controlled by the Sinoatrial Node (SAN), the primary pacemaker of the heart. The SAN is a heterogeneous multi-compartment structure characterized by clusters of specialized cardiomyocytes enmeshed within strands of connective tissue or fibrosis. Intranodal fibrosis is emerging as an important modulator of structural and functional integrity of the SAN pacemaker complex. In adult human hearts, fatty tissue and fibrosis insulate the SAN from the hyperpolarizing effect of the surrounding atria while electrical communication between the SAN and right atrium is restricted to discrete SAN conduction pathways. The amount of fibrosis within the SAN is inversely correlated with heart rate, while age and heart size are positively correlated with fibrosis. Pathological upregulation of fibrosis within the SAN may lead to tachycardia-bradycardia arrhythmias and cardiac arrest, possibly due to SAN reentry and exit block, and is associated with atrial fibrillation, ventricular arrhythmias, heart failure and myocardial infarction. In this review, we will discuss current literature on the role of fibrosis in normal SAN structure and function, as well as the causes and consequences of SAN fibrosis upregulation in disease conditions.
Circulation-arrhythmia and Electrophysiology | 2015
Jichao Zhao; Brian J. Hansen; Thomas A. Csepe; Praise Lim; Yufeng Wang; Michelle A. Williams; Peter J. Mohler; Paul M. L. Janssen; Raul Weiss; John D. Hummel; Vadim V. Fedorov
Atrial fibrillation (AF) is one of the most common arrhythmias, but its mechanisms remain unclear because of the complex human atrial structure and pathology of this disease.1,2 High-resolution optical mapping3 and 3-dimensional (3D) structural imaging of the atria in ex vivo animal models4 have provided a wealth of information for better understanding of AF.1 However, these high-resolution techniques cannot currently be performed in patients to directly uncover the important role of atrial anatomic substrates in pathophysiological conduction.3 For the first time in the intact human heart, this study integrates functional data collected by high-resolution near infrared optical mapping with the 3D atrial structure of the same heart obtained by novel micro-computed tomographic (CT) imaging to investigate the structural basis for conduction during sinus rhythm, atrial pacing, and sustained atrial flutter (AFL) and AF. An intact explanted human heart (unused donor, 63-year-old woman, chronic hypertension, heart weight 608 g) from the Lifeline of Ohio Organ Procurement Organization was obtained in the operating room at the time of cross-clamp and immediately preserved with cold cardioplegic solution (1–3°C) in accordance with The Ohio State University Institutional Review Board. Whole intact atria were dissected from ventricles and coronary-perfused with oxygenated Tyrode solution at constant pressure (55–60 mm Hg) and temperature (37°C). Subepicardial optical mapping of the whole coronary-perfused atria was conducted with near-infrared voltage-sensitive dye di-4-ANBDQBS3 to detect and map atrial activations during sinus rhythm, posterior left atrium pacing, and pacing-induced sustained AFL and AF (Figures 1–3). A high spatial (100×100 pixels, 1.16×1.16 mm2) and temporal (1 frame/ms) resolution Ultima-L CMOS camera (SciMedia, Japan) was focused on both atria from the epicardial surface (Figure 1A). After functional mapping, the human atria was formalin-fixed for 48 hours, and then washed with PBS and incubated at 4°C …
Interface Focus | 2013
Oleg Aslanidi; Michael A. Colman; Marta Varela; Jichao Zhao; Bruce H. Smaill; Jules C. Hancox; Mark R. Boyett; Henggui Zhang
Mechanisms underlying the genesis of re-entrant substrate for the most common cardiac arrhythmia, atrial fibrillation (AF), are not well understood. In this study, we develop a multi-scale three-dimensional computational model that integrates cellular electrophysiology of the left atrium (LA) and pulmonary veins (PVs) with the respective tissue geometry and fibre orientation. The latter is reconstructed in unique detail from high-resolution (approx. 70 μm) contrast micro-computed tomography data. The model is used to explore the mechanisms of re-entry initiation and sustenance in the PV region, regarded as the primary source of high-frequency electrical activity in AF. Simulations of the three-dimensional model demonstrate that an initial break-down of normal electrical excitation wave-fronts can be caused by the electrical heterogeneity between the PVs and LA. High tissue anisotropy is then responsible for the slow conduction and generation of a re-entrant circuit near the PVs. Evidence of such circuits has been seen clinically in AF patients. Our computational study suggests that primarily the combination of electrical heterogeneity and conduction anisotropy between the PVs and LA tissues leads to the generation of a high-frequency (approx. 10 Hz) re-entrant source near the PV sleeves, thus providing new insights into the arrhythmogenic mechanisms of excitation waves underlying AF.
Circulation | 2016
Ning Li; Thomas A. Csepe; Brian J. Hansen; Lidiya V. Sul; Anuradha Kalyanasundaram; Stanislav O. Zakharkin; Jichao Zhao; Avirup Guha; David R. Van Wagoner; Ahmet Kilic; Peter J. Mohler; Paul M. L. Janssen; Brandon J. Biesiadecki; John D. Hummel; Raul Weiss; Vadim V. Fedorov
Background: Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor and its downstream GIRK (G protein-coupled inwardly rectifying potassium channels) channels (IK,Ado). Methods: We applied biatrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and nonfailing human hearts (n=37). Results: Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10–100 µmol/L) produced more significant shortening of action potential durations in RA (from 290±45 to 239±41 ms, 17.3±10.4%; P<0.01) than LA (from 307±24 to 286±23 ms, 6.7±6.6%; P<0.01). In 10 hearts, adenosine induced AF (317±116 s) that, when sustained (≥2 minutes), was primarily maintained by 1 to 2 localized reentrant drivers in lateral RA. Tertiapin (10–100 nmol/L), a selective GIRK channel blocker, counteracted adenosine-induced action potential duration shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher adenosine A1 receptor (2.7±1.7-fold; P<0.01) and GIRK4 (1.7±0.8-fold; P<0.05) protein expression than lateral/posterior LA. Conclusions: This study revealed a 3-fold RA-to-LA adenosine A1 receptor protein expression gradient in the human heart, leading to significantly greater RA versus LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest adenosine A1 receptor/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine.Background: Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor and its downstream GIRK (G protein-coupled inwardly rectifying potassium channels) channels ( I K,Ado). Methods: We applied biatrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and nonfailing human hearts (n=37). Results: Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10–100 µmol/L) produced more significant shortening of action potential durations in RA (from 290±45 to 239±41 ms, 17.3±10.4%; P <0.01) than LA (from 307±24 to 286±23 ms, 6.7±6.6%; P <0.01). In 10 hearts, adenosine induced AF (317±116 s) that, when sustained (≥2 minutes), was primarily maintained by 1 to 2 localized reentrant drivers in lateral RA. Tertiapin (10–100 nmol/L), a selective GIRK channel blocker, counteracted adenosine-induced action potential duration shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher adenosine A1 receptor (2.7±1.7-fold; P <0.01) and GIRK4 (1.7±0.8-fold; P <0.05) protein expression than lateral/posterior LA. Conclusions: This study revealed a 3-fold RA-to-LA adenosine A1 receptor protein expression gradient in the human heart, leading to significantly greater RA versus LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest adenosine A1 receptor/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine. # Clinical Perspective {#article-title-40}
Interface Focus | 2013
Timothy D. Butters; Oleg Aslanidi; Jichao Zhao; Bruce H. Smaill; Henggui Zhang
Sheep is an animal model often used for experimental studies into the underlying mechanisms of cardiac arrhythmias. Previous studies have shown that biophysically detailed computer models of the heart provide a powerful alternative to experimental animal models for underpinning such mechanisms. In this study we have developed a family of mathematical models for the electrical action potentials of various sheep atrial cell types. We have also developed a 3D model for the anatomical structure of the sheep atria. By incorporating the single cell models into the anatomical structure, a novel computational model for the sheep atria has been reconstructed. This model was then used to investigate the mechanisms by which rapid focal activity in the pulmonary veins can transit to atrial fibrillation. It was found that the anisotropic property of the atria arising from the fibre structure plays an important role in facilitating fibrillatory atrial excitation waves.