Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jichun Chen is active.

Publication


Featured researches published by Jichun Chen.


Nature | 2009

Bmi1 regulates mitochondrial function and the DNA damage response pathway

Jie Liu; Liu Cao; Jichun Chen; Shiwei Song; In Hye Lee; Celia Quijano; Hongjun Liu; Keyvan Keyvanfar; Haoqian Chen; Long-Yue Cao; Bong-Hyun Ahn; Neil G. Kumar; Ilsa I. Rovira; Xiao-Ling Xu; Maarten van Lohuizen; Noboru Motoyama; Chu-Xia Deng; Toren Finkel

Mice deficient in the Polycomb repressor Bmi1 develop numerous abnormalities including a severe defect in stem cell self-renewal, alterations in thymocyte maturation and a shortened lifespan. Previous work has implicated de-repression of the Ink4a/Arf (also known as Cdkn2a) locus as mediating many of the aspects of the Bmi1-/- phenotype. Here we demonstrate that cells derived from Bmi1-/- mice also have impaired mitochondrial function, a marked increase in the intracellular levels of reactive oxygen species and subsequent engagement of the DNA damage response pathway. Furthermore, many of the deficiencies normally observed in Bmi1-/- mice improve after either pharmacological treatment with the antioxidant N-acetylcysteine or genetic disruption of the DNA damage response pathway by Chk2 (also known as Chek2) deletion. These results demonstrate that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicate that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.


Blood | 2008

Rabbit ATG but not horse ATG promotes expansion of functional CD4+CD25highFOXP3+ regulatory T cells in vitro.

Xingmin Feng; Sachiko Kajigaya; Elena E. Solomou; Keyvan Keyvanfar; Xiuli Xu; Nalini Raghavachari; Peter J. Munson; Thomas M. Herndon; Jichun Chen; Neal S. Young

Regulatory T cells (Treg) play important roles in suppressing immune responses and maintaining tolerance. Rabbit antithymocyte globulin (rATG) and horse ATG (hATG) are widely used in the treatment of immune-mediated syndromes, but their effects on Treg are unknown. We show here that in vitro culture of normal human peripheral blood mononuclear cells (PBMCs) with a low-dose rATG resulted in marked expansion of functional Treg by converting CD4+CD25- T cells to CD4+CD25+ T cells. hATG did not expand but rather decreased Treg. Immuno-blot showed increased expression of FOXP3 and NFAT1 in CD4+CD25- and CD4+CD25+ T cells exposed to rATG. PBMCs treated with rATG displayed increased interleukin-10 in culture supernatants than those treated with hATG. Furthermore, rATG and hATG showed differences in their potential to stimulate CD4+ T cells as examined using different activation markers. Microarray revealed that rATG induced markedly different gene-expression patterns in PBMCs, compared with hATG-treated or untreated PBMCs. Our findings indicate that rATG expanded Treg, probably through transcriptional regulation by enhanced NFAT1 expression, in turn conferring CD4+CD25- T cell FOXP3 expression and regulatory activity. The therapeutic effects of rATG may occur not only because of lymphocyte depletion but also enhanced Treg cell number and function.


Experimental Hematology | 2000

Genetic regulation of primitive hematopoietic stem cell senescence

Jichun Chen; Clinton M. Astle; David E. Harrison

OBJECTIVE To define effects of strain on PHSC (primitive hematopoietic stem cells) senescence (decline in function with age) in vivo, and to map a locus that regulates PHSC senescence. MATERIALS AND METHODS Long-term function and self-renewal were compared in bone marrow cells (BMC) from old and young mice of three strains: BALB/cBy (BALB), DBA/2 (D2) and C57BL/6 (B6), using competitive repopulation and serial transplantation in vivo. BMC from each old or young donor were mixed with standard doses of congenic, genetically marked BMC and transplanted into lethally recipients. Percentages of donor-type erythrocytes and lymphocytes in the recipients determined the functional ability of donor PHSC relative to the standard, where one repopulating unit (RU) of donor BMC equals the repopulating ability of 100,000 standard competitor BMC. Using similar techniques, repopulating abilities of old and young recombinant inbred (RI) donors of 12 strains derived from BALB and B6 were compared in NK-depleted BALBxB6 Fl recipients to map a locus that appears to have a major role in PHSC senescence. RESULTS PHSC function declined about 2 fold with age in BALB and D2 BMC, and increased more than 2-fold with age in B6 BMC, with all old/young strain differences significant, p<.01. Ten months after serial transplantation, young B6, BALB, and D2 PHSC had self-renewed 1.6-, 4.2-, and 3.2-fold better than old, with BALB and D2 old/young differences p<.01. Young B6 PHSC self-renewed 1.9- and 2.9-fold better than young BALB and D2 PHSC. The PHSC senescence phenotypes (old/young RU ratios) for 12 CXB RI strains suggested a genetic linkage to D12Nyul7 on Chromosome 12. CONCLUSION PHSC senescence is genetically regulated, and is much delayed in the B6 strain compared to the BALB and D2 strains. A locus on Chromosome 12 may regulate PHSC senescence.


Experimental Hematology | 1999

Development and aging of primitive hematopoietic stem cells in BALB/cBy mice.

Jichun Chen; Clinton M. Astle; David E. Harrison

Evaluating the function of an individual hematopoietic stem cell (HSC) is a difficult and important problem. The functional ability per HSC, as well as the HSC concentration, was measured with minimal disruption to the cells in vivo using the new competitive dilution assay. Distribution of HSC into recipients was modeled based on Poisson probabilities. Predictions of donor contributions from models assuming different levels of donor HSC functional ability and concentration were compared to actual observations. The model with the least difference between predictions and observations was accepted. In BALB/ cBy (BALB) mice, models assuming equal functional ability of HSC from the same donor fit extremely well with actual observations, suggesting that all HSC are functionally homogeneous at any particular time point during development or aging. Relative HSC functional ability per cell declined during development, so that a fetal HSC had 1.6 to 3.0 times the functional ability of a young adult HSC. The decline continued with age, so that a young adult HSC had 1.6 to 2.0 times the functional ability of an old HSC. Concentrations of HSC that engrafted and functioned were similar among 16-day fetal liver cells and bone marrow cells (BMC) from 3-month and 25 to 28-month-old adult mice. They were either 10 or 4 HSC per million cells when tested in BALB or CByB6F1 recipients, respectively. All HSC were pluripotent and produced lymphoid and myeloid descendants proportionally (r = 0.80 to 0.98, p < 0.01). Fetal and young HSC in both types of recipients maintained clonal stability long term so that percentages of donor cells at 6 and 9 months were strongly correlated (r = 0.72 to 0.93, p < 0.01). Although HSC from aged donors in BALB recipients maintained clonal stability, HSC from the same aged donors failed to show clonal stability in CByB6F1 recipients, perhaps due to the less suitable host environment. All HSC from BALB mice seemed to have equal functional levels at a given stage of life and were gradually exhausted simultaneously through development and aging.


Blood | 2010

Th17 immune responses contribute to the pathophysiology of aplastic anemia

Régis Peffault de Latour; Valeria Visconte; Tomoiku Takaku; Colin Wu; Andrew J. Erie; Annahita K. Sarcon; Marie J. Desierto; Phillip Scheinberg; Keyvan Keyvanfar; Olga Nunez; Jichun Chen; Neal S. Young

T helper type 17 (Th17) cells have been characterized based on production of interleukin-17 (IL-17) and association with autoimmune diseases. We studied the role of Th17 cells in aplastic anemia (AA) by isolating Th17 cells from patients blood (n = 41) and bone marrow (BM) mononuclear cells (n = 7). The frequency and total number of CD3(+)CD4(+)IL-17-producing T cells were increased in AA patients at presentation compared with healthy controls (P = .0007 and .02, respectively) and correlated with disease activity. There was an inverse relationship between the numbers of Th17 cells and CD4(+)CD25(high)FoxP3(+) regulatory T cells (Tregs) in the blood of AA patients. Concomitant with the classical Th1 response, we detected the presence of CD4(+) and CD8(+) IL-17-producing T cells in a mouse model of lymph node infusion-induced BM failure. Although anti-IL-17 treatment did not abrogate BM failure, early treatment with the anti-IL-17 antibody reduced the severity of BM failure with significantly higher platelet (P < .01) and total BM cell (P < .05) counts at day 10. Recipients that received anti-IL-17 treatment had significantly fewer Th1 cells (P < .01) and more Treg cells (P < .05) at day 10 after lymph node infusion. Th17 immune responses contribute to AA pathophysiology, especially at the early stage during disease progression.


Blood | 2010

Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy

Tomoiku Takaku; Daniela Malide; Jichun Chen; Rodrigo T. Calado; Sachiko Kajigaya; Neal S. Young

In many animals, blood cell production occurs in the bone marrow. Hematopoiesis is complex, requiring self-renewing and pluripotent stem cells, differentiated progenitor and precursor cells, and supportive stroma, adipose tissue, vascular structures, and extracellular matrix. Although imaging is a vital tool in hematology research, the 3-dimensional architecture of the bone marrow tissue in situ remains largely uncharacterized. The major hindrance to imaging the intact marrow is the surrounding bone structures are almost impossible to cut/image through. We have overcome these obstacles and describe a method whereby whole-mounts of bone marrow tissue were immunostained and imaged in 3 dimensions by confocal fluorescence and reflection microscopy. We have successfully mapped by multicolor immunofluorescence the localization pattern of as many as 4 cell features simultaneously over large tiled views and to depths of approximately 150 μm. Three-dimensional images can be assessed qualitatively and quantitatively to appreciate the distribution of cell types and their interrelationships, with minimal perturbations of the tissue. We demonstrate its application to normal mouse and human marrow, to murine models of marrow failure, and to patients with aplastic anemia, myeloid, and lymphoid cell malignancies. The technique should be generally adaptable for basic laboratory investigation and for clinical diagnosis of hematologic diseases.


Experimental Hematology | 2003

Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction.

Jichun Chen; Clinton M. Astle; David E. Harrison

OBJECTIVE The aim of this study was to test dietary restriction (DR) as an intervention to alleviate senescence-associated functional defects in hematopoietic stem cells (HSCs). MATERIALS AND METHODS BALB/cByJ (BALB) mice were fed ad libitum (AL) or were diet restricted (DR) to 75% of the AL food intake after 1 month of age. Peripheral blood and bone marrow cell compositions were compared in 3- and 25-month-old AL (AL-3, AL-25) mice and in 25-month-old DR (DR-25) mice using fluorescence-activated cell staining. Relative HSC functions in vivo were compared using competitive repopulation, and were also tested in 6-month-old BALB mice to measure the effects of short-term DR. RESULTS Compared to AL-3, AL-25 blood had significantly lower levels of red blood cells and hemoglobin. AL-25 marrow contained less than half the concentration of Lin(-)CD34(-)Sca1(+)CD117(+) HSCs and showed only half the in vivo functional ability of AL-3 marrow. In vivo, AL-25 HSCs failed to produce the strong correlations over time that demonstrate clonal stability during competitive repopulation. These correlations were shown in AL-3 HSCs. DR for 24 months alleviated hematopoietic deficiencies in the blood, increased concentrations of bone marrow Lin(-)CD34(-)Sca1(+)CD117(+) HSCs and improved HSC functional abilities in DR-25 mice to values far greater than those in normally aged mice. Surprisingly, HSC function in 25-month-old DR mice was better than that in young adults. Degrees of recipient repopulation by HSCs from DR-25 mice also correlated well over time, demonstrating clonal stability. Short-term DR for 5 months also improved HSC function, but to a much smaller degree. CONCLUSIONS Aged BALB mice show hematopoietic and HSC senescence and clonal succession. Lifelong DR slows hematopoietic senescence and prevents HSC aging.


Experimental Hematology | 2008

Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice

Jichun Chen; Felicia M. Ellison; Keyvan Keyvanfar; Stephanie O. Omokaro; Marie J. Desierto; Michael A. Eckhaus; Neal S. Young

OBJECTIVE To test function of hematopoietic stem cells (HSCs) in vivo in C57BL/6 (B6) and Trp53-deficient (Trp53 null) mice by using two HSC enrichment schemes. MATERIALS AND METHODS Bone marrow (BM) Lin-CD41-CD48-CD150+ (signaling lymphocyte activation molecules [SLAM]), Lin-CD41-CD48-CD150- (SLAM-) and Lin-Sca1+CD117+ (LSK) cells were defined by fluorescence-activated cell staining (FACS). Cellular reactive oxygen species (ROS) level was also analyzed by FACS. Sorted SLAM, SLAM-, and LSK cells were tested in vivo in the competitive repopulation (CR) and serial transplantation assays. RESULTS SLAM cell fraction was 0.0078%+/-0.0010% and 0.0135%+/-0.0010% of total BM cells in B6 and Trp53 null mice, and was highly correlated (R2=0.7116) with LSK cells. CD150+ BM cells also contained more ROSlow cells than did CD150- cells. B6 SLAM cells repopulated recipients much better than B6 SLAM- cells, showing high HSC enrichment. B6 SLAM cells also engrafted recipients better than Trp53 null SLAM cells in the CR and the follow-up serial transplantation assays. Similarly, LSK cells from B6 donors also had higher repopulating ability than those from Trp53 null donors. However, whole BM cells from the same B6 and Trp53 null donors showed the opposite functional trend in recipient engraftment. CONCLUSION Both SLAM and LSK marker sets can enrich HSCs from B6 and Trp53 mice. Deficiency of Trp53 upregulates HSC self-renewal but causes no gain of HSC function.


Journal of Immunology | 2007

Minor Antigen H60-Mediated Aplastic Anemia Is Ameliorated by Immunosuppression and the Infusion of Regulatory T Cells

Jichun Chen; Felicia M. Ellison; Michael A. Eckhaus; Aleah Smith; Keyvan Keyvanfar; Rodrigo T. Calado; Neal S. Young

Human bone marrow (BM) failure mediated by the immune system can be modeled in mice. In the present study, infusion of lymph node (LN) cells from C57BL/6 mice into C.B10-H2b/LilMcd (C.B10) recipients that are mismatched at multiple minor histocompatibility Ags, including the immunodominant Ag H60, produced fatal aplastic anemia. Declining blood counts correlated with marked expansion and activation of CD8 T cells specific for the immunodominant minor histocompatibility Ag H60. Infusion of LN cells from H60-matched donors did not produce BM failure in C.B10 mice, whereas isolated H60-specific CTL were cytotoxic for normal C.B10 BM cells in vitro. Treatment with the immunosuppressive drug cyclosporine abolished H60-specific T cell expansion and rescued animals from fatal pancytopenia. The development of BM failure was associated with a significant increase in activated CD4+CD25+ T cells that did not express intracellular FoxP3, whereas inclusion of normal CD4+CD25+ regulatory T cells in combination with C57BL/6 LN cells aborted H60-specific T cell expansion and prevented BM destruction. Thus, a single minor histocompatibility Ag H60 mismatch can trigger an immune response leading to massive BM destruction. Immunosuppressive drug treatment or enhancement of regulatory T cell function abrogated this pathophysiology and protected animals from the development of BM failure.


Leukemia | 2013

Modeling tumor–host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy

Sarah E.M. Herman; Xiameng Sun; Erin M. McAuley; Matthew M. Hsieh; Stefania Pittaluga; Mark Raffeld; Delong Liu; Keyvan Keyvanfar; Colby M. Chapman; Jichun Chen; Joseph J. Buggy; Georg Aue; John F. Tisdale; Patricia Pérez-Galán; Adrian Wiestner

Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental factors for proliferation and survival. In particular, the B-cell receptor (BCR) and nuclear factor- κB (NF-κB) pathways are activated in the lymph node (LN) microenvironment. Thus, model systems mimicking tumor–host interactions are important tools to study CLL biology and pathogenesis. We investigated whether the recently established NOD/scid/γcnull (NSG) mouse xenograft model can recapitulate the effects of the human microenvironment. We assessed, therefore, tumor characteristics previously defined in LN-resident CLL cells, including proliferation, and activation of the BCR and NF-κB pathways. We found that the murine spleen (SP) microenvironment supported CLL cell proliferation and activation to a similar degree than the human LN, including induction of BCR and NF-κB signaling in the xenografted cells. Next, we used this model to study ibrutinib, a Bruton’s tyrosine kinase inhibitor in clinical development. Ibrutinib inhibited BCR and NF-κB signaling induced by the microenvironment, decreased proliferation, induced apoptosis and reduced the tumor burden in vivo. Thus, our data demonstrate that the SP of xenografted NSG mice can, in part, recapitulate the role of the human LN for CLL cells. In addition, we show that ibrutinib effectively disrupts tumor–host interactions essential for CLL cell proliferation and survival in vivo.

Collaboration


Dive into the Jichun Chen's collaboration.

Top Co-Authors

Avatar

Neal S. Young

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Keyvan Keyvanfar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marie J. Desierto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xingmin Feng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sachiko Kajigaya

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David E. Harrison

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Felicia M. Ellison

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rodrigo T. Calado

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Malide

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge