Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jie Na is active.

Publication


Featured researches published by Jie Na.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium

Miho K. Furue; Jie Na; Jamie P. Jackson; Tetsuji Okamoto; Mark A. Jones; Duncan Baker; Ryu-Ichiro Hata; Harry Moore; J. Denry Sato; Peter W. Andrews

A major limitation in developing applications for the use of human embryonic stem cells (HESCs) is our lack of knowledge of their responses to specific cues that control self-renewal, differentiation, and lineage selection. HESCs are most commonly maintained on inactivated mouse embryonic fibroblast feeders in medium supplemented with FCS, or proprietary replacements such as knockout serum-replacement together with FGF-2. These undefined culture conditions hamper analysis of the mechanisms that control HESC behavior. We have now developed a defined serum-free medium, hESF9, for the culture of HESCs on a type I-collagen substrate without feeders. In contrast to other reported media for the culture of HESCs, this medium has a lower osmolarity (292 mosmol/liter), l-ascorbic acid-2-phosphate (0.1 μg/ml), and heparin. Insulin, transferrin, albumin conjugated with oleic acid, and FGF-2 (10 ng/ml) were the only protein components. Further, we found that HESCs would proliferate in the absence of exogenous FGF-2 if heparin was also present. However, their growth was enhanced by the addition of FGF-2 up to 10 ng/ml although higher concentrations were deleterious in the presence of heparin.


Nature | 2016

The landscape of accessible chromatin in mammalian preimplantation embryos

Jingyi Wu; Bo Huang; He Chen; Qiangzong Yin; Yang Liu; Yunlong Xiang; Bingjie Zhang; Bofeng Liu; Qiujun Wang; Weikun Xia; Wenzhi Li; Yuanyuan Li; Jing Ma; Xu Peng; Hui Zheng; Jia Ming; Wenhao Zhang; Jing Zhang; Geng Tian; Feng Xu; Zai Chang; Jie Na; Xuerui Yang; Wei Xie

In mammals, extensive chromatin reorganization is essential for reprogramming terminally committed gametes to a totipotent state during preimplantation development. However, the global chromatin landscape and its dynamics in this period remain unexplored. Here we report a genome-wide map of accessible chromatin in mouse preimplantation embryos using an improved assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) approach with CRISPR/Cas9-assisted mitochondrial DNA depletion. We show that despite extensive parental asymmetry in DNA methylomes, the chromatin accessibility between the parental genomes is globally comparable after major zygotic genome activation (ZGA). Accessible chromatin in early embryos is widely shaped by transposable elements and overlaps extensively with putative cis-regulatory sequences. Unexpectedly, accessible chromatin is also found near the transcription end sites of active genes. By integrating the maps of cis-regulatory elements and single-cell transcriptomes, we construct the regulatory network of early development, which helps to identify the key modulators for lineage specification. Finally, we find that the activities of cis-regulatory elements and their associated open chromatin diminished before major ZGA. Surprisingly, we observed many loci showing non-canonical, large open chromatin domains over the entire transcribed units in minor ZGA, supporting the presence of an unusually permissive chromatin state. Together, these data reveal a unique spatiotemporal chromatin configuration that accompanies early mammalian development.


Nature | 2016

Allelic reprogramming of the histone modification H3K4me3 in early mammalian development

Bingjie Zhang; Hui Zheng; Bo Huang; Wenzhi Li; Yunlong Xiang; Xu Peng; Jia Ming; Xiaotong Wu; Yu Zhang; Qianhua Xu; Wenqiang Liu; Xiaochen Kou; Yanhong Zhao; Wenteng He; Chong Li; Bo Chen; Yuanyuan Li; Qiujun Wang; Jing Ma; Qiangzong Yin; Kehkooi Kee; Anming Meng; Shaorong Gao; Feng Xu; Jie Na; Wei Xie

Histone modifications are fundamental epigenetic regulators that control many crucial cellular processes. However, whether these marks can be passed on from mammalian gametes to the next generation is a long-standing question that remains unanswered. Here, by developing a highly sensitive approach, STAR ChIP–seq, we provide a panoramic view of the landscape of H3K4me3, a histone hallmark for transcription initiation, from developing gametes to post-implantation embryos. We find that upon fertilization, extensive reprogramming occurs on the paternal genome, as H3K4me3 peaks are depleted in zygotes but are readily observed after major zygotic genome activation at the late two-cell stage. On the maternal genome, we unexpectedly find a non-canonical form of H3K4me3 (ncH3K4me3) in full-grown and mature oocytes, which exists as broad peaks at promoters and a large number of distal loci. Such broad H3K4me3 peaks are in contrast to the typical sharp H3K4me3 peaks restricted to CpG-rich regions of promoters. Notably, ncH3K4me3 in oocytes overlaps almost exclusively with partially methylated DNA domains. It is then inherited in pre-implantation embryos, before being erased in the late two-cell embryos, when canonical H3K4me3 starts to be established. The removal of ncH3K4me3 requires zygotic transcription but is independent of DNA replication-mediated passive dilution. Finally, downregulation of H3K4me3 in full-grown oocytes by overexpression of the H3K4me3 demethylase KDM5B is associated with defects in genome silencing. Taken together, these data unveil inheritance and highly dynamic reprogramming of the epigenome in early mammalian development.


PLOS ONE | 2010

Activation of Pluripotency Genes in Human Fibroblast Cells by a Novel mRNA Based Approach

Jordan R. Plews; Jianliang Li; Mark Jones; Harry Moore; Chris Mason; Peter W. Andrews; Jie Na

Background Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS) cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine. Methodology/Principal Findings In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT) and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES) cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5′-aza-2′-deoxycytidine) and cultured in human embryonic stem cell (ES) medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days. Conclusion/Significance Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.


Stem Cell Research | 2010

Inhibition of ERK1/2 prevents neural and mesendodermal differentiation and promotes human embryonic stem cell self-renewal

Jie Na; Miho K. Furue; Peter W. Andrews

Extracellular signal-regulated kinases (ERKs) have many important functions during embryogenesis. However, their role in embryonic stem (ES) cells is controversial. Previous studies reported that, in contrast to mouse ES cells, human ES cells differentiate if ERK1/2 is inhibited. We reexamined the role of ERK1/2 in human ES cells using a chemically defined culture system and found that when ERK1/2 is blocked with specific chemical inhibitors, neural and mesendodermal differentiation is prevented, but cells become sensitive to BMP-induced differentiation. Inhibition of ERK1/2 significantly reduced the clonogenicity of human ES cells by preventing cell adhesion and survival. When this negative effect was avoided, we were able to maintain human ES cell self-renewal for more than 3months in the presence of ERK1/2 inhibitors in a chemically defined culture system containing FGF2 and activin A but no BMP4. Our results suggest that the functional outcome of FGF/ERK1/2 signaling in human ES cells is influenced by the relative levels of activin A/TGFbeta and BMP activity. Moreover, activation of ERK1/2 in human ES cells is required for proper neural and mesendodermal differentiation. In contrast to mouse ES cells, a low level of BMP4 is sufficient to initiate extraembryonic differentiation when ERK1/2 is inhibited.


Protein & Cell | 2014

Aneuploidy in pluripotent stem cells and implications for cancerous transformation

Jie Na; Duncan Baker; Jing Zhang; Peter W. Andrews; Ivana Barbaric

ABSTRACTOwing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation.


Stem Cell Research & Therapy | 2010

Molecular mechanisms of pluripotency and reprogramming

Jie Na; Jordan R. Plews; Jianliang Li; Patompon Wongtrakoongate; Timo Tuuri; Anis Feki; Peter W. Andrews; Christian Unger

Pluripotent stem cells are able to form any terminally differentiated cell. They have opened new doors for experimental and therapeutic studies to understand early development and to cure degenerative diseases in a way not previously possible. Nevertheless, it remains important to resolve and define the mechanisms underlying pluripotent stem cells, as that understanding will impact strongly on future medical applications. The capture of pluripotent stem cells in a dish is bound to several landmark discoveries, from the initial culture and phenotyping of pluripotent embryonal carcinoma cells to the recent induction of pluripotency in somatic cells. On this developmental time line, key transcription factors, such as Oct4, Sox2 or Nanog, have been revealed not only to regulate but also to functionally induce pluripotency. These early master regulators of development control developmental signalling pathways that affect the cell cycle, regulate gene expression, modulate the epigenetic state and repair DNA damage. Besides transcription factors, microRNAs have recently been shown to play important roles in gene expression and are embedded into the regulatory network orchestrating cellular development. However, there are species-specific differences in pluripotent cells, such as surface marker expression and growth factor requirements. Such differences and their underlying developmental pathways require clear definition and have major impacts on the preclinical test bed of pluripotent cells.


Protein & Cell | 2011

Mechanism and methods to induce pluripotency

Peizhe Wang; Jie Na

Pluripotent stem cells are able to self-renew indefinitely and differentiate into all types of cells in the body. They can thus be an inexhaustible source for future cell transplantation therapy to treat degenerative diseases which currently have no cure. However, non-autologous cells will cause immune rejection. Induced pluripotent stem cell (iPSC) technology can convert somatic cells to the pluripotent state, and therefore offers a solution to this problem. Since the first generation of iPSCs, there has been an explosion of relevant research, from which we have learned much about the genetic networks and epigenetic landscape of pluripotency, as well as how to manipulate genes, epigenetics, and microRNAs to obtain iPSCs. In this review, we focus on the mechanism of cellular reprogramming and current methods to induce pluripotency. We also highlight new problems emerging from iPSCs. Better understanding of the fundamental mechanisms underlying pluripotenty and refining the methodology of iPSC generation will have a significant impact on future development of regenerative medicine.


Protein & Cell | 2017

An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells.

Jianying Guo; Dacheng Ma; Rujin Huang; Jia Ming; Min Ye; Kehkooi Kee; Zhen Xie; Jie Na

ABSTRACTHuman pluripotent stem cells (hPSCs) are an important system to study early human development, model human diseases, and develop cell replacement therapies. However, genetic manipulation of hPSCs is challenging and a method to simultaneously activate multiple genomic sites in a controllable manner is sorely needed. Here, we constructed a CRISPR-ON system to efficiently upregulate endogenous genes in hPSCs. A doxycycline (Dox) inducible dCas9-VP64-p65-Rta (dCas9-VPR) transcription activator and a reverse Tet transactivator (rtTA) expression cassette were knocked into the two alleles of the AAVS1 locus to generate an iVPR hESC line. We showed that the dCas9-VPR level could be precisely and reversibly controlled by the addition and withdrawal of Dox. Upon transfection of multiplexed gRNA plasmid targeting the NANOG promoter and Dox induction, we were able to control NANOG gene expression from its endogenous locus. Interestingly, an elevated NANOG level promoted naïve pluripotent gene expression, enhanced cell survival and clonogenicity, and enabled hESCs to integrate with the inner cell mass (ICM) of mouse blastocysts in vitro. Thus, iVPR cells provide a convenient platform for gene function studies as well as high-throughput screens in hPSCs.


Journal of Materials Chemistry B | 2014

Facile oxidation of superaligned carbon nanotube films for primary cell culture and genetic engineering

Zhimin Tao; Peizhe Wang; Lin Wang; Lin Xiao; Fengzhi Zhang; Jie Na

A material that can simultaneously support mammalian cell growth and preserve their physiological function is highly desirable in biomedical research. To meet this need, we fabricated superaligned carbon nanotube (SACNT) thin films and modified their surface using a convenient oxidization method. Our analysis demonstrated that the physical properties of oxidized SACNT films became more biocompatible. It supported the attachment and growth of primary mouse fibroblast cells as well as neonatal rat cardiomyocytes. Moreover, when cultured on oxidized SACNT films, neonatal rat cardiomyocytes spread normally and displayed calcium influx. Finally, we showed that, as oxidized SACNT films retained their electrical conductivity, attached cells can be electrotransfected in situ on them. Strong and prolonged expression of green fluorescence proteins (GFPs) or red fluorescence proteins (RFPs) was observed upon cell electroporation on oxidized SACNT films. In summary, our results provide evidence that simple oxidation greatly improved the biocompatibility of carbon nanotube films, which becomes more suitable for future applications in cell and genetic engineering.

Collaboration


Dive into the Jie Na's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge