Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jie Ren Li is active.

Publication


Featured researches published by Jie Ren Li.


Nano Letters | 2008

Elucidating the role of surface hydrolysis in preparing organosilane nanostructures via particle lithography.

Jie Ren Li; Jayne C. Garno

A new method of particle lithography is described for preparing rings or nanoporous films of organosilanes. Millions of exquisitely uniform and precisely spaced nanostructures with designed surface chemistry can be rapidly produced using vapor deposition through mesoparticle masks. Nanoscopic amounts of water are essential for initiating surface hydrosilation. Thus, the key step for preparing covalently bonded nanostructures of organosilanes is to control drying parameters to spatially direct the placement of water on surfaces.


ACS Nano | 2009

Engineering the spatial selectivity of surfaces at the nanoscale using particle lithography combined with vapor deposition of organosilanes

Jie Ren Li; Kathie L. Lusker; Jing Jiang Yu; Jayne C. Garno

Particle lithography is a practical approach to generate millions of organosilane nanostructures on various surfaces, without the need for vacuum environments or expensive instrumentation. This report describes a stepwise chemistry route to prepare organosilane nanostructures and then apply the patterns as a spatially selective foundation to attach gold nanoparticles. Sites with thiol terminal groups were sufficiently small to localize the attachment of clusters of 2-5 nanoparticles. Basic steps such as centrifuging, drying, heating, and rinsing were used to generate arrays of regular nanopatterns. Close-packed films of monodisperse latex spheres can be used as an evaporative mask to spatially direct the placement of nanoscopic amounts of water on surfaces. Vapor phase organosilanes deposit selectively at areas of the surface containing water residues to generate nanostructures with regular thickness, geometry, and periodicity as revealed in atomic force microscopy images. The area of contact underneath the mesospheres is effectively masked for later synthetic steps, providing exquisite control of surface coverage and local chemistry. By judicious selection in designing the terminal groups of organosilanes, surface sites can be engineered at the nanoscale for building more complex structures. The density of the nanopatterns and surface coverage scale predictably with the diameter of the mesoparticle masks. The examples presented definitively illustrate the capabilities of using the chemistry of molecularly thin films of organosilanes to spatially define the selectivity of surfaces at very small size scales.


Langmuir | 2008

Self-Assembled Monolayer Initiated Electropolymerization: A Route to Thin-Film Materials with Enhanced Photovoltaic Performance

Euiyong Hwang; K.M. Nalin de Silva; Chad B. Seevers; Jie Ren Li; Jayne C. Garno; Evgueni E. Nesterov

Continuing progress in the field of organic polymer photovoltaic (PV) devices requires the development of new materials with better charge-transport efficiency. To improve this parameter, we have investigated surface-attached bilayer polymer PV thin films prepared starting from a covalently attached monolayer of an electroactive initiator using sequential electropolymerization of dithiophene and its derivatives. These systems were found to show significantly increased photocurrent generation quantum yields as compared to systems made through conventional approaches. In addition, the described PV thin films possess remarkable mechanical, air, and photostability. These properties likely arise from the more uniform and better ordered bulk layer morphologies as well as tighter covalently bonded contacts at the interfacial junctions, contributing to improved charge transport. While more studies on the fundamental reasons behind the discovered phenomenon are currently underway, this information can be readily applied to build more efficient organic polymer photovoltaics.


Analyst | 2006

Fabrication of nanopatterned films of bovine serum albumin and staphylococcal protein A using latex particle lithography.

Jie Ren Li; Gretchen C. Henry; Jayne C. Garno

Arrays of protein nanostructures can be formed on surfaces such as mica(0001) and Au(111) using lithography with polystyrene latex particles. To create arrays of protein nanostructures, monodisperse latex spheres are mixed with the desired protein (e.g. BSA, protein A or IgG) and deposited onto substrates. Protein-coated nanospheres self-assemble into organized crystalline layers when dried on flat surfaces. After rinsing with water, dried latex spheres are displaced to expose periodic arrays of uncovered circular cavities. The immobilized proteins remain attached to the surface and form nanopatterns over broad areas (microns) corresponding to the thickness of a single layer of proteins. The nanostructures of immobilized proteins maintain the order and periodicity of the latex scaffold. The morphology and diameter of the protein nanostructures are tuneable by selecting the ratios of protein-to-latex and the diameters of latex spheres. Well-defined nanostructured surfaces of proteins supply a tool for fundamental investigations of protein binding interactions in biological systems at the nanoscale and have potential applications in biochip and biosensing systems.


Nanomedicine: Nanotechnology, Biology and Medicine | 2008

Controlling the surface coverage and arrangement of proteins using particle lithography

Johnpeter N. Ngunjiri; Stephanie L. Daniels; Jie Ren Li; Wilson K. Serem; Jayne C. Garno

AIMS The applicability of particle lithography with monodisperse mesospheres is tested with various proteins to control the surface coverage and dimensions of protein nanopatterns. METHODS & MATERIALS The natural self-assembly of monodisperse spheres provides an efficient, high-throughput route to prepare protein nanopatterns. Mesospheres assemble spontaneously into organized crystalline layers when dried on flat substrates, which supply a structural frame or template to direct the placement of proteins. The template particles are displaced with a simple rinsing step to disclose periodic arrays of protein nanopatterns on surfaces. RESULTS & DISCUSSION The proteins are attached securely to the surface, forming nanopatterns with a measured thickness of a single layer. The morphology and diameter of the protein nanostructures can be tailored by selecting the diameter of the mesospheres and choosing the protein concentration. CONCLUSIONS Particle lithography is shown to be a practical, highly reproducible method for patterning proteins on surfaces of mica, glass and gold. High-throughput patterning was achieved with ferritin, apoferritin, bovine serum albumin and immunoglobulin-G. Depending on the ratio of proteins to mesospheres, either porous films or ring structures were produced. This approach can be applied for fundamental investigations of protein-binding interactions of biological systems in surface-bound bioassays and biosensor surfaces.


ACS Applied Materials & Interfaces | 2009

Nanostructures of Octadecyltrisiloxane Self-Assembled Monolayers Produced on Au(111) Using Particle Lithography

Jie Ren Li; Jayne C. Garno

Preparing high-quality self-assembled monolayers (SAMs) of organosilanes on conductive metal substrates such as gold is problematic because of the hydrophobic nature of the surface under ambient conditions. Trace amounts of water are required for a surface hydrolysis reaction to form siloxane bridges to the metal substrate. We describe an approach using sequential steps of ultraviolet (UV) irradiation, particle lithography, and chemical vapor deposition of octadecyltrichlorosilane (OTS) to successfully prepare silane nanostructures on Au111 surfaces. Pretreatment of gold films with UV irradiation renders the surface to be sufficiently hydrophilic for particle lithography. Close-packed films of monodisperse latex mesospheres provide an evaporative mask to spatially direct the placement of nanoscopic amounts of water on surfaces. Vapor-phase organosilanes deposit selectively at areas of the surface containing water residues to produce millions of nanopatterns with regular thickness, geometry, and periodicity. Atomic force microscopy (AFM) images reveal that OTS binding is localized to areas defined by water residues. The spacing between adjacent nanopatterns is determined by the periodicity of the latex mask; however, the dimensions of the nanostructures are confined to a narrow contact area of the water meniscus, which surrounds the base of the latex spheres. The siloxane nanostructures on Au111 furnish an excellent model surface for AFM characterizations, as demonstrated with current-sensing measurements.


Langmuir | 2011

Nanostructures of Functionalized Gold Nanoparticles Prepared by Particle Lithography with Organosilanes

Kathie L. Lusker; Jie Ren Li; Jayne C. Garno

Periodic arrays of organosilane nanostructures were prepared with particle lithography to define sites for selective adsorption of functionalized gold nanoparticles. Essentially, the approach for nanoparticle lithography consists of procedures with two masks. First, latex mesospheres were used as a surface mask for deposition of an organosilane vapor, to produce an array of holes within a covalently bonded, organic thin film. The latex particles were readily removed with solvent rinses to expose discrete patterns of nanosized holes of uncovered substrate. The nanostructured film of organosilanes was then used as a surface mask for a second patterning step, with immersion in a solution of functionalized nanoparticles. Patterned substrates were fully submerged in a solution of surface-active gold nanoparticles coated with 3-mercaptopropyltrimethoxysilane. Regularly shaped, nanoscopic areas of bare substrate produced by removal of the latex mask provided sites to bind silanol-terminated gold nanoparticles, and the methyl-terminated areas of the organosilane film served as an effective resist, preventing nonspecific adsorption on masked areas. Characterizations with atomic force microscopy demonstrate the steps for lithography with organosilanes and functionalized nanoparticles. Patterning was accomplished for both silicon and glass substrates, to generate nanostructures with periodicities of 200-300 nm that match the diameters of the latex mesospheres of the surface masks. Nanoparticles were shown to bind selectively to uncovered, exposed areas of the substrate and did not attach to the methyl-terminal groups of the organosilane mask. Billions of well-defined nanostructures of nanoparticles can be generated using this high-throughput approach of particle lithography, with exquisite control of surface density and periodicity at the nanoscale.


Scanning | 2008

Achieving precision and reproducibility for writing patterns of n-alkanethiol self-assembled monolayers with automated nanografting

Johnpeter N. Ngunjiri; Algernon T. Kelley; Zorabel M. LeJeune; Jie Ren Li; Brian R. Lewandowski; Wilson K. Serem; Stephanie L. Daniels; Kathie L. Lusker; Jayne C. Garno

Nanografting is a high-precision approach for scanning probe lithography, which provides unique advantages and capabilities for rapidly writing arrays of nanopatterns of thiol self-assembled monolayers (SAMs). Nanografting is accomplished by force- induced displacement of molecules of a matrix SAM, followed immediately by the self-assembly of n-alkanethiol ink molecules from solution. The feedback loop used to control the atomic force microscope tip position and displacement enables exquisite control of forces applied to the surface, ranging from pico to nanonewtons. To achieve high-resolution writing at the nanoscale, the writing speed, direction, and applied force need to be optimized. There are strategies for programing the tip translation, which will improve the uniformity, alignment, and geometries of nanopatterns written using open-loop feedback control. This article addresses the mechanics of automated nanografting and demonstrates results for various writing strategies when nanografting patterns of n-alkanethiol SAMs.


ACS Nano | 2011

Engineered Nanostructures of Antigen Provide an Effective Means for Regulating Mast Cell Activation

Zhao Deng; I-Chun Weng; Jie Ren Li; Huan Yuan Chen; Fu Tong Liu; Gang Yu Liu

Nanostructures containing 2,4-dinitrophenyl (DNP) as antigen were designed and produced to investigate antibody-mediated activation of mast cells. The design consists of nanogrids of DNP termini inlaid in alkanethiol self-assembled monolayers (SAMs). Using scanning probe-based nanografting, nanometer precision was attained for designed geometry, size, and periodicity. Rat basophilic leukemia (RBL) cells exhibited high sensitivity to the geometry and local environment of DNP presented on these nanostructures. The impact included cellular adherence, spreading, membrane morphology, cytoskeleton structure, and activation. The highest level of spreading and activation was induced by nanogrids of 17 nm line width and 40 nm periodicity, with DNP haptens 1.4 nm above the surroundings. The high efficacy is attributed to two main factors. First, DNP sites in the nanostructure are highly accessible by anti-DNP IgE during recognition. Second, the arrangement or geometry of DNP termini in nanostructures promotes clustering of FcεRI receptors that are prelinked to IgE. The clustering effectively initiates Lyn-mediated signaling cascades, ultimately leading to the degranulation of RBL cells. This work demonstrates an important concept: that nanostructures of ligands provide new and effective cues for directing cellular signaling processes.


Analytical Chemistry | 2009

Detecting the magnetic response of iron oxide capped organosilane nanostructures using magnetic sample modulation and atomic force microscopy.

Jie Ren Li; Brian R. Lewandowski; Song Xu; Jayne C. Garno

A new imaging strategy using atomic force microscopy (AFM) is demonstrated for mapping magnetic domains at size regimes below 100 nm. The AFM-based imaging mode is referred to as magnetic sample modulation (MSM), since the flux of an AC-generated electromagnetic field is used to induce physical movement of magnetic nanomaterials on surfaces during imaging. The AFM is operated in contact mode using a soft, nonmagnetic tip to detect the physical motion of the sample. By slowly scanning an AFM probe across a vibrating area of the sample, the frequency and amplitude of vibration induced by the magnetic field is tracked by changes in tip deflection. Thus, the AFM tip serves as a force and motion sensor for mapping the vibrational response of magnetic nanomaterials. Essentially, MSM is a hybrid of contact mode AFM combined with selective modulation of magnetic domains. The positional feedback loop for MSM imaging is the same as that used for force modulation and contact mode AFM; however, the vibration of the sample is analyzed using channels of a lock-in amplifier. The investigations are facilitated by nanofabrication methods combining particle lithography with organic vapor deposition and electroless deposition of iron oxide, to prepare designed test platforms of magnetic materials at nanometer length scales. Custom test platforms furnished suitable surfaces for MSM characterizations at the level of individual metal nanostructures.

Collaboration


Dive into the Jie Ren Li's collaboration.

Top Co-Authors

Avatar

Jayne C. Garno

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Gang Yu Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathie L. Lusker

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Lifang Shi

University of California

View shared research outputs
Top Co-Authors

Avatar

Su Hao Lo

University of California

View shared research outputs
Top Co-Authors

Avatar

Yang Liu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge