Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jie Zong is active.

Publication


Featured researches published by Jie Zong.


Plant Physiology | 2010

OsC6, Encoding a Lipid Transfer Protein, Is Required for Postmeiotic Anther Development In Rice

Dasheng Zhang; Wanqi Liang; Changsong Yin; Jie Zong; Fangwei Gu; Dabing Zhang

Synthesis of lipidic components in anthers, including of the pollen exine, is essential for plant male reproductive development. Plant lipid transfer proteins (LTPs) are small, abundant lipid-binding proteins that have the ability to exchange lipids between membranes in vitro. However, their biological role in male reproductive development remains less understood. Here, we report the crucial role of OsC6 in regulating postmeiotic anther development in rice (Oryza sativa). Found in monocots, OsC6 belongs to a distinct clade from previously identified LTP1 and LTP2 family members found in both dicots and monocots. OsC6 expression is mainly detectable in tapetal cells and weakly in microspores from stage 9 to stage 11 of anther development. Immunological assays indicated that OsC6 is widely distributed in anther tissues such as the tapetal cytoplasm, the extracellular space between the tapetum and middle layer, and the anther locule and anther cuticle. Biochemical assays indicated that recombinant OsC6 has lipid binding activity. Moreover, plants in which OsC6 was silenced had defective development of orbicules (i.e. Ubisch bodies) and pollen exine and had reduced pollen fertility. Furthermore, additional evidence is provided that the expression of OsC6 is positively regulated by a basic helix-loop-helix transcription factor, Tapetum Degeneration Retardation (TDR). Extra granule-like structures were observed on the inner surface of the tdr tapetal layer when the expression of OsC6 was driven by the TDR promoter compared with the tdr mutant. These data suggest that OsC6 plays a crucial role in the development of lipidic orbicules and pollen exine during anther development in rice.


The Plant Cell | 2011

Rice MADS3 Regulates ROS Homeostasis during Late Anther Development

Lifang Hu; Wanqi Liang; Changsong Yin; Xiao Cui; Jie Zong; Xing Wang; Jianping Hu; Dabing Zhang

The authors identified a role for the rice floral homeotic C-class protein, MADS3, in modulating reactive oxygen species levels through the regulation of the MT-1-4b gene during late anther development. Recombinant MT-1-4b protein had superoxide anion and hydroxyl radical scavenging activity, and reduction of MT-1-4b expression caused decreased pollen fertility. The rice (Oryza sativa) floral homeotic C-class gene, MADS3, was previously shown to be required for stamen identity determination during early flower development. Here, we describe a role for MADS3 in regulating late anther development and pollen formation. Consistent with this role, MADS3 is highly expressed in the tapetum and microspores during late anther development, and a newly identified MADS3 mutant allele, mads3-4, displays defective anther walls, aborted microspores, and complete male sterility. During late anther development, mads3-4 exhibits oxidative stress-related phenotypes. Microarray analysis revealed expression level changes in many genes in mads3-4 anthers. Some of these genes encode proteins involved in reactive oxygen species (ROS) homeostasis; among them is MT-1-4b, which encodes a type 1 small Cys-rich and metal binding protein. In vivo and in vitro assays showed that MADS3 is associated with the promoter of MT-1-4b, and recombinant MT-1-4b has superoxide anion and hydroxyl radical scavenging activity. Reducing the expression of MT-1-4b causes decreased pollen fertility and an increased level of superoxide anion in transgenic plants. Our findings suggest that MADS3 is a key transcriptional regulator that functions in rice male reproductive development, at least in part, by modulating ROS levels through MT-1-4b.


Plant Physiology | 2011

PERSISTENT TAPETAL CELL1 Encodes a PHD-Finger Protein That Is Required for Tapetal Cell Death and Pollen Development in Rice

Hui Li; Zheng Yuan; Gema Vizcay-Barrena; Caiyun Yang; Wanqi Liang; Jie Zong; Zoe A. Wilson; Dabing Zhang

In higher plants, timely degradation of tapetal cells, the innermost sporophytic cells of the anther wall layer, is a prerequisite for the development of viable pollen grains. However, relatively little is known about the mechanism underlying programmed tapetal cell development and degradation. Here, we report a key regulator in monocot rice (Oryza sativa), PERSISTANT TAPETAL CELL1 (PTC1), which controls programmed tapetal development and functional pollen formation. The evolutionary significance of PTC1 was revealed by partial genetic complementation of the homologous mutation MALE STERILITY1 (MS1) in the dicot Arabidopsis (Arabidopsis thaliana). PTC1 encodes a PHD-finger (for plant homeodomain) protein, which is expressed specifically in tapetal cells and microspores during anther development in stages 8 and 9, when the wild-type tapetal cells initiate a typical apoptosis-like cell death. Even though ptc1 mutants show phenotypic similarity to ms1 in a lack of tapetal DNA fragmentation, delayed tapetal degeneration, as well as abnormal pollen wall formation and aborted microspore development, the ptc1 mutant displays a previously unreported phenotype of uncontrolled tapetal proliferation and subsequent commencement of necrosis-like tapetal death. Microarray analysis indicated that 2,417 tapetum- and microspore-expressed genes, which are principally associated with tapetal development, degeneration, and pollen wall formation, had changed expression in ptc1 anthers. Moreover, the regulatory role of PTC1 in anther development was revealed by comparison with MS1 and other rice anther developmental regulators. These findings suggest a diversified and conserved switch of PTC1/MS1 in regulating programmed male reproductive development in both dicots and monocots, which provides new insights in plant anther development.


Cell Research | 2010

The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice

Haifeng Li; Wanqi Liang; Ruidong Jia; Changsong Yin; Jie Zong; Hongzhi Kong; Dabing Zhang

Although AGAMOUS-LIKE6 (AGL6) MADS-box genes are ancient with wide distributions in gymnosperms and angiosperms, their functions remain poorly understood. Here, we show the biological role of the AGL6-like gene, OsMADS6, in specifying floral organ and meristem identities in rice (Oryza sativa L.). OsMADS6 was strongly expressed in the floral meristem at early stages. Subsequently, OsMADS6 transcripts were mainly detectable in paleas, lodicules, carpels and the integument of ovule, as well as in the receptacle. Compared to wild type plants, osmads6 mutants displayed altered palea identity, extra glume-like or mosaic organs, abnormal carpel development and loss of floral meristem determinacy. Strikingly, mutation of a SEPALLATA (SEP)-like gene, OsMADS1 (LHS1), enhanced the defect of osmads6 flowers, and no inner floral organs or glume-like structures were observed in whorls 2 and 3 of osmads1-z osmads6-1 flowers. Furthermore, the osmads1-z osmads6-1 double mutants developed severely indeterminate floral meristems. Our finding, therefore, suggests that the ancient OsMADS6 gene is able to specify “floral state” by determining floral organ and meristem identities in monocot crop rice together with OsMADS1.


Gene | 2009

Evolution of the RNA-dependent RNA polymerase (RdRP) genes: duplications and possible losses before and after the divergence of major eukaryotic groups.

Jie Zong; Xuan Yao; Jinyuan Yin; Dabing Zhang; Hong Ma

Eukaryotic RNA-dependent RNA polymerases (RdRPs, encoded by RDR genes) play critical roles in developmental regulation, maintenance of genome integrity, and defense against foreign nucleic acids. However, the phylogenetic relationship of RDRs remains unclear. From available genome sequences, we identified 161 putative RDR genes from 56 eukaryotes, ranging from protists to multicellular organisms, including plants, fungi and invertebrate animals, such as nematodes, lancelet and sea anemone. On the other hand, we did not detect RDR homologs in vertebrates and insects, even though RNA interference functions in these organisms. Our phylogenetic analysis of the RDR genes suggests that the eukaryotic ancestor might have had three copies, i.e. RDRalpha, RDRbeta and RDRgamma. These three ancient copies were also supported by the patterns of protein sequence motifs. Further duplication events after the divergence of major eukaryotic groups were supported by the phylogenetic analyses, including some that likely occurred before the separation of subgroups within each kingdom. We present a model for a possible evolutionary history of RDR genes in eukaryotes.


Journal of Integrative Plant Biology | 2010

Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.

Xin Zhang; Jie Zong; Jianhua Liu; Jinyuan Yin; Dabing Zhang

WUSCHEL-related homeobox (WOX) genes form a large gene family specifically expressed in plants. They are known to play important roles in regulating the development of plant tissues and organs by determining cell fate. Recent available whole genome sequences allow us to do more comprehensive phylogenetic analysis of the WOX genes in plants. In the present study, we identified 11 and 21 WOXs from sorghum (Sorghum bicolor) and maize (Zea mays), respectively. The 72 WOX genes from rice (Oryza sativa), sorghum, maize, Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa) were grouped into three well supported clades with nine subgroups according to the amino acid sequences of their homodomains. Their phylogenetic relationship was also supported by the observation of the motifs outside the homodomain. We observed the variation of duplication events among the nine sub-groups between monocots and eudicots, for instance, more gene duplication events of WOXs within subgroup A for monocots, while, less for dicots in this subgroup. Furthermore, we observed the conserved intron/exon structural patterns of WOX genes in rice, sorghum and Arabidopsis. In addition, WUS (Wuschel)-box and EAR (the ERF-associated amphiphilic repression)-like motif were observed to be conserved among several WOX subgroups in these five plants. Comparative analysis of expression patterns of WOX genes in rice and Arabidopsis suggest that the WOX genes play conserved and various roles in plants. This work provides insights into the evolution of the WOX gene family and is useful for future research.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production

Hui Zhang; Chenxi Xu; Yi He; Jie Zong; Xijia Yang; Huamin Si; Zongxiu Sun; Jianping Hu; Wanqi Liang; Dabing Zhang

Rice is a major staple food worldwide. Making hybrid rice has proved to be an effective strategy to significantly increase grain yield. Current hybrid rice technologies rely on male sterile lines and have been used predominantly in indica cultivars. However, intrinsic problems exist in the implementation of these technologies, such as limited germplasms and unpredictable conversions from sterility to fertility in the field. Here, we describe a photoperiod-controlled male sterile line, carbon starved anther (csa), which contains a mutation in an R2R3 MYB transcription regulator of pollen development. This mutation was introduced into indica and japonica rice, and it rendered male sterility under short-day conditions and male fertility under long-day conditions in both lines. Furthermore, F1 plants of csa and a restorer line JP69 exhibited heterosis (hybrid vigor), suggesting the feasibility of using this mutation to create hybrid rice. The csa-based photoperiod-sensitive male sterile line allows the establishment of a stable two-line hybrid system, which promises to have a significant impact on agriculture.


The Plant Cell | 2016

MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice

Yi He; Chong Wang; James D. Higgins; Junping Yu; Jie Zong; Pingli Lu; Dabing Zhang; Wanqi Liang

The plant-specific F-box protein MEIOTIC F-BOX plays critical roles in male meiotic DNA double-strand break repair and is required for male meiotic progression in rice. F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression.


Journal of Integrative Plant Biology | 2015

Development of genome‐wide insertion/deletion markers in rice based on graphic pipeline platform

Yang Lü; Xiao Cui; Rui Li; Piaopiao Huang; Jie Zong; Danqing Yao; Gang Li; Dabing Zhang; Zheng Yuan

DNA markers play important roles in plant breeding and genetics. The Insertion/Deletion (InDel) marker is one kind of co-dominant DNA markers widely used due to its low cost and high precision. However, the canonical way of searching for InDel markers is time-consuming and labor-intensive. We developed an end-to-end computational solution (InDel Markers Development Platform, IMDP) to identify genome-wide InDel markers under a graphic pipeline environment. IMDP constitutes assembled genome sequences alignment pipeline (AGA-pipe) and next-generation re-sequencing data mapping pipeline (NGS-pipe). With AGA-pipe we are able to identify 12,944 markers between the genome of rice cultivars Nipponbare and 93-11. Using NGS-pipe, we reported 34,794 InDels from re-sequencing data of rice cultivars Wu-Yun-Geng7 and Guang-Lu-Ai4. Combining AGA-pipe and NGS-pipe, we developed 205,659 InDels in eight japonica and nine indica cultivars and 2,681 InDels showed a subgroup-specific pattern. Polymerase chain reaction (PCR) analysis of subgroup-specific markers indicated that the precision reached 90% (86 of 95). Finally, to make them available to the public, we have integrated the InDels/markers information into a website (Rice InDel Marker Database, RIMD, http://202.120.45.71/). The application of IMDP in rice will facilitate efficiency for development of genome-wide InDel markers, in addition it can be used in other species with reference genome sequences and NGS data.


PLOS ONE | 2016

Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding

Wei Fan; Jie Zong; Zhijing Luo; Mingjiao Chen; Xiangxiang Zhao; Dabing Zhang; Yiping Qi; Zheng Yuan

Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection.

Collaboration


Dive into the Jie Zong's collaboration.

Top Co-Authors

Avatar

Dabing Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wanqi Liang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zheng Yuan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Changsong Yin

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Cui

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Gang Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jianhua Liu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Piaopiao Huang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Rui Li

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge