Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiefei Tong is active.

Publication


Featured researches published by Jiefei Tong.


Science | 2013

A strategy for modulation of enzymes in the ubiquitin system.

Andreas Ernst; George V. Avvakumov; Jiefei Tong; Yihui Fan; Yanling Zhao; Philipp Alberts; Avinash Persaud; John R. Walker; Ana-Mirela Neculai; Dante Neculai; Andrew Vorobyov; Pankaj Garg; Linda G. Beatty; Pak-Kei Chan; Yu-Chi Juang; Marie-Claude Landry; Christina Yeh; Elton Zeqiraj; Konstantina Karamboulas; Abdellah Allali-Hassani; Masoud Vedadi; Mike Tyers; Jason Moffat; Frank Sicheri; Laurence Pelletier; Daniel Durocher; Brian Raught; Daniela Rotin; Jianhua Yang; Michael F. Moran

Modifying Deubiquitinases Protein ubiquitination is a widespread mechanism for cellular regulation, and new regulators are valuable research tools and may help to generate therapeutic small molecules. Ernst et al. (p. 590, published online 3 January) used known crystal structures to roughly define the interaction domain between a ubiquitin-specific protease and a ubiquitinated substrate and then screened ubiquitin variants with changes in these residues to find variants that acted as potent and specific regulators that could modify ubiquitin pathway regulation in cells. A technique for developing specific and potent enzyme inhibitors is validated on enzymes of the ubiquitin‑proteasome system. The ubiquitin system regulates virtually all aspects of cellular function. We report a method to target the myriad enzymes that govern ubiquitination of protein substrates. We used massively diverse combinatorial libraries of ubiquitin variants to develop inhibitors of four deubiquitinases (DUBs) and analyzed the DUB-inhibitor complexes with crystallography. We extended the selection strategy to the ubiquitin conjugating (E2) and ubiquitin ligase (E3) enzymes and found that ubiquitin variants can also enhance enzyme activity. Last, we showed that ubiquitin variants can bind selectively to ubiquitin-binding domains. Ubiquitin variants exhibit selective function in cells and thus enable orthogonal modulation of specific enzymatic steps in the ubiquitin system.


Journal of Proteome Research | 2010

Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry.

Lily L. Jin; Jiefei Tong; Amol Prakash; Scott Peterman; Jonathan R. St-Germain; Paul Taylor; Suzanne Trudel; Michael F. Moran

The stoichiometry of protein phosphorylation at specific amino acid sites may be used to infer on the significance of the modification, and its biological function in the cell. However, detection and quantification of phosphorylation stoichiometry in tissue remain a significant challenge. Here we describe a strategy for highly sensitive, label-free quantification of protein phosphorylation stoichiometry. Method development included the analysis of synthetic peptides in order to determine constants to relate the mass spectrometry signals of cognate peptide/phosphopeptide pairs, and the detection of the cognate peptides by using high resolution Fourier Transform mass spectrometry (FTMS) and selected reaction monitoring mass spectrometry (SRM). By analyzing extracted ion currents by FTMS, the phosphorylation stoichiometries of two tyrosine residues (tyrosine-194 and tyrosine-397) in the protein tyrosine kinase Lyn were determined in transfected human HEK293T cells and two cultured human multiple myeloma strains. To achieve high sensitivity to measure phosphorylation stoichiometry in tissue, SRM methods were developed and applied for the analysis of phosphorylation stoichiometries of Lyn phospho-sites in multiple myeloma xenograft tumors. Western immuno-blotting was used to verify mass spectrometry findings. The SRM method has potential applications in analyzing clinical samples wherein protein phosphorylation stoichiometries may represent important pharmacodynamic biomarkers.


Molecular & Cellular Proteomics | 2009

Epidermal Growth Factor Receptor Phosphorylation Sites Ser991 and Tyr998 Are Implicated in the Regulation of Receptor Endocytosis and Phosphorylations at Ser1039 and Thr1041

Jiefei Tong; Paul Taylor; Scott Peterman; Amol Prakash; Michael F. Moran

Aberrant expression, activation, and down-regulation of the epidermal growth factor receptor (EGFR) have causal roles in many human cancers, and post-translational modifications including phosphorylation and ubiquitination and protein-protein interactions directly modulate EGFR function. Quantitative mass spectrometric analyses including selected reaction monitoring (also known as multiple reaction monitoring) were applied to the EGFR and associated proteins. In response to epidermal growth factor (EGF) stimulation of cells, phosphorylations at EGFR Ser991 and Tyr998 accumulated more slowly than at receptor sites involved in RAS-ERK signaling. Phosphorylation-deficient mutant receptors S991A and Y998F activated ERK in response to EGF but were impaired for receptor endocytosis. Consistent with these results, the mutant receptors retained a network of interactions with known signaling proteins including EGF-stimulated binding to the adaptor GRB2. Compared with wild type EGFR the Y998F variant had diminished EGF-stimulated interaction with the ubiquitin E3 ligase CBL, and the S991A variant had decreased associated ubiquitin. The endocytosis-defective mutant receptors were found to have elevated phosphorylation at positions Ser1039 and Thr1041. These residues reside in a serine/threonine-rich region of the receptor previously implicated in p38 mitogen-activated protein kinase-dependent stress/cytokine-induced EGFR internalization and recycling (Zwang, Y., and Yarden, Y. (2006) p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy. EMBO J. 25, 4195–4206). EGF-induced phosphorylations at Ser1039 and Thr1041 were blocked by treatment of cells with SB-202190, a selective inhibitor of p38. These results suggest that coordinated phosphorylation of EGFR involving sites Tyr998, Ser991, Ser1039, and Thr1041 governs the trafficking of EGF receptors. This reinforces the notion that EGFR function is manifest through spatially and temporally controlled protein-protein interactions and phosphorylations.


Clinical Proteomics | 2012

Selected Reaction Monitoring (SRM) Analysis of Epidermal Growth Factor Receptor (EGFR) in Formalin Fixed Tumor Tissue.

Todd Hembrough; Sheeno Thyparambil; Wei-Li Liao; Marlene Darfler; Joseph Abdo; Kathleen Bengali; Paul Taylor; Jiefei Tong; Humberto Lara-Guerra; Thomas K. Waddell; Michael F. Moran; Ming-Sound Tsao; David B. Krizman; Jon Burrows

BackgroundAnalysis of key therapeutic targets such as epidermal growth factor receptor (EGFR) in clinical tissue samples is typically done by immunohistochemistry (IHC) and is only subjectively quantitative through a narrow dynamic range. The development of a standardized, highly-sensitive, linear, and quantitative assay for EGFR for use in patient tumor tissue carries high potential for identifying those patients most likely to benefit from EGFR-targeted therapies.MethodsA mass spectrometry-based Selected Reaction Monitoring (SRM) assay for the EGFR protein (EGFR-SRM) was developed utilizing the Liquid Tissue®-SRM technology platform. Tissue culture cells (n = 4) were analyzed by enzyme-linked immunosorbent assay (ELISA) to establish quantitative EGFR levels. Matching formalin fixed cultures were analyzed by the EGFR-SRM assay and benchmarked against immunoassay of the non-fixed cultured cells. Xenograft human tumor tissue (n = 10) of non-small cell lung cancer (NSCLC) origin and NSCLC patient tumor tissue samples (n = 23) were microdissected and the EGFR-SRM assay performed on Liquid Tissue lysates prepared from microdissected tissue. Quantitative curves and linear regression curves for correlation between immunoassay and SRM methodology were developed in Excel.ResultsThe assay was developed for quantitation of a single EGFR tryptic peptide for use in FFPE patient tissue with absolute specificity to uniquely distinguish EGFR from all other proteins including the receptor tyrosine kinases, IGF-1R, cMet, Her2, Her3, and Her4. The assay was analytically validated against a collection of tissue culture cell lines where SRM analysis of the formalin fixed cells accurately reflects EGFR protein levels in matching non-formalin fixed cultures as established by ELISA sandwich immunoassay (R2 = 0.9991). The SRM assay was applied to a collection of FFPE NSCLC xenograft tumors where SRM data range from 305amol/μg to 12,860amol/μg and are consistent with EGFR protein levels in these tumors as previously-reported by western blot and SRM analysis of the matched frozen tissue. In addition, the SRM assay was applied to a collection of histologically-characterized FFPE NSCLC patient tumor tissue where EGFR levels were quantitated from not detected (ND) to 670amol/μg.ConclusionsThis report describes and evaluates the performance of a robust and reproducible SRM assay designed for measuring EGFR directly in FFPE patient tumor tissue with accuracy at extremely low (attomolar) levels. This assay can be used as part of a complementary or companion diagnostic strategy to support novel therapies currently under development and demonstrates the potential to identify candidates for EGFR-inhibitor therapy, predict treatment outcome, and reveal mechanisms of therapeutic resistance.


Blood | 2011

A small-molecule inhibitor of D-cyclin transactivation displays preclinical efficacy in myeloma and leukemia via phosphoinositide 3-kinase pathway

Xinliang Mao; Biyin Cao; Tabitha E. Wood; Rose Hurren; Jiefei Tong; Xiaoming Wang; Wenjie Wang; Jie Li; Yueping Jin; Wenxian Sun; Paul A. Spagnuolo; Neil MacLean; Michael F. Moran; Alessandro Datti; Jeffery L. Wrana; Robert A. Batey; Aaron D. Schimmer

D-cyclins are universally dysregulated in multiple myeloma and frequently overexpressed in leukemia. To better understand the role and impact of dysregulated D-cyclins in hematologic malignancies, we conducted a high-throughput screen for inhibitors of cyclin D2 transactivation and identified 8-ethoxy-2-(4-fluorophenyl)-3-nitro-2H-chromene (S14161), which inhibited the expression of cyclins D1, D2, and D3 and arrested cells at the G(0)/G(1) phase. After D-cyclin suppression, S14161 induced apoptosis in myeloma and leukemia cell lines and primary patient samples preferentially over normal hematopoietic cells. In mouse models of leukemia, S14161 inhibited tumor growth without evidence of weight loss or gross organ toxicity. Mechanistically, S14161 inhibited the activity of phosphoinositide 3-kinase in intact cells and the activity of the phosphoinositide 3-kinases α, β, δ, and γ in a cell-free enzymatic assay. In contrast, it did not inhibit the enzymatic activities of other related kinases, including the mammalian target of rapamycin, the DNA-dependent protein kinase catalytic subunit, and phosphoinositide-dependent kinase-1. Thus, we identified a novel chemical compound that inhibits D-cyclin transactivation via the phosphoinositide 3-kinase/protein kinase B signaling pathway. Given its potent antileukemia and antimyeloma activity and minimal toxicity, S14161 could be developed as a novel agent for blood cancer therapy.


Science Signaling | 2014

Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity

Avinash Persaud; Philipp Alberts; Sara Mari; Jiefei Tong; Ryan Murchie; Elena Maspero; Frozan Safi; Michael F. Moran; Simona Polo; Daniela Rotin

The receptor tyrosine kinases FGFR1 and EGFR promote phosphorylation of the ubiquitin ligase NEDD4, leading to activation of its catalytic activity. Phosphorylation Activates NEDD4 NEDD4 is an E3 ubiquitin ligase that promotes the endocytosis and degradation of receptor tyrosine kinases, such as the fibroblast growth factor (FGF) receptor (FGFR) and the epidermal growth factor receptor (EGFR). Persaud et al. found that in primary cells and cancer cell lines, ligand-bound FGFR or EGFR stimulated the phosphorylation of NEDD4, which prevented an autoinhibitory interaction within NEDD4, thereby promoting the autoubiquitylation of NEDD4 and the ubiquitylation of NEDD4 substrates, including FGFR. Expressing a nonphosphorylatable form of NEDD4 in cells reduced FGF-induced endocytosis and degradation of FGFR, leading to sustained FGF signaling and enhanced cell growth and suggesting a feedback mechanism in the regulation of FGFR and EGFR. Ligand binding to the receptor tyrosine kinase fibroblast growth factor (FGF) receptor 1 (FGFR1) causes dimerization and activation by transphosphorylation of tyrosine residues in the kinase domain. FGFR1 is ubiquitylated by the E3 ligase NEDD4 (also known as NEDD4-1), which promotes FGFR1 internalization and degradation. Although phosphorylation of FGFR1 is required for NEDD4-dependent endocytosis, NEDD4 directly binds to a nonphosphorylated region of FGFR1. We found that activation of FGFR1 led to activation of c-Src kinase–dependent tyrosine phosphorylation of NEDD4, enhancing the ubiquitin ligase activity of NEDD4. Using mass spectrometry, we identified several FGF-dependent phosphorylated tyrosines in NEDD4, including Tyr43 in the C2 domain and Tyr585 in the HECT domain. Mutating these tyrosines to phenylalanine to prevent phosphorylation inhibited FGF-dependent NEDD4 activity and FGFR1 endocytosis and enhanced cell proliferation. Mutating the tyrosines to glutamic acid to mimic phosphorylation enhanced NEDD4 activity. Moreover, the NEDD4 C2 domain bound the HECT domain, and the presence of phosphomimetic mutations inhibited this interaction, suggesting that phosphorylation of NEDD4 relieves an inhibitory intra- or intermolecular interaction. Accordingly, activation of FGFR1 was not required for activation of NEDD4 that lacked its C2 domain. Activation of c-Src by epidermal growth factor (EGF) also promoted tyrosine phosphorylation and enhanced the activity of NEDD4. Thus, we identified a feedback mechanism by which receptor tyrosine kinases promote catalytic activation of NEDD4 and that may represent a mechanism of receptor crosstalk.


Nature Communications | 2014

Integrated Omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact

Lei Li; Yuhong Wei; Christine To; Chang Qi Zhu; Jiefei Tong; Nhu-An Pham; Paul Taylor; Ignatchenko; Alexandr Ignatchenko; Wei Zhang; Dennis Wang; Naoki Yanagawa; Ming Li; Melania Pintilie; Geoffrey Liu; Lakshmi Muthuswamy; Shepherd Fa; M. Tsao; Thomas Kislinger; Michael F. Moran

Cancer results from processes prone to selective pressure and dysregulation acting along the sequence-to-phenotype continuum DNA → RNA → protein → disease. However, the extent to which cancer is a manifestation of the proteome is unknown. Here we present an integrated omic map representing non-small cell lung carcinoma. Dysregulated proteins not previously implicated as cancer drivers are encoded throughout the genome including, but not limited to, regions of recurrent DNA amplification/deletion. Clustering reveals signatures composed of metabolism proteins particularly highly recapitulated between patient-matched primary and xenograft tumours. Interrogation of The Cancer Genome Atlas reveals cohorts of patients with lung and other cancers that have DNA alterations in genes encoding the signatures, and this was accompanied by differences in survival. The recognition of genome and proteome alterations as related products of selective pressure driving the disease phenotype may be a general approach to uncover and group together cryptic, polygenic disease drivers.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Multiple myeloma phosphotyrosine proteomic profile associated with FGFR3 expression, ligand activation, and drug inhibition

Jonathan R. St-Germain; Paul Taylor; Jiefei Tong; Lily L. Jin; Ana Nikolic; Ian I. Stewart; Rob M. Ewing; Moyez Dharsee; Zhihua Li; Suzanne Trudel; Michael F. Moran

Signaling by growth factor receptor tyrosine kinases is manifest through networks of proteins that are substrates and/or bind to the activated receptors. FGF receptor-3 (FGFR3) is a drug target in a subset of human multiple myelomas (MM) and is mutationally activated in some cervical and colon and many bladder cancers and in certain skeletal dysplasias. To define the FGFR3 network in multiple myeloma, mass spectrometry was used to identify and quantify phosphotyrosine (pY) sites modulated by FGFR3 activation and inhibition in myeloma-derived KMS11 cells. Label-free quantification of peptide ion currents indicated the activation of FGFR3 by phosphorylation of tandem tyrosines in the kinase domain activation loop when cellular pY phosphatases were inhibited by pervanadate. Among the 175 proteins that accumulated pY in response to pervanadate was a subset of 52 including FGFR3 that contained a total of 61 pY sites that were sensitive to inhibition by the FGFR3 inhibitor PD173074. The FGFR3 isoform containing the tandem pY motif in its activation loop was targeted by PD173074. Forty of the drug-sensitive pY sites, including two located within the 35-residue cytoplasmic domain of the transmembrane growth factor binding proteoglycan (and multiple myeloma biomarker) Syndecan-1/CD138, were also stimulated in cells treated with the ligand FGF1, providing additional validation of their link to FGFR3. The identification of these overlapping sets of co-modulated tyrosine phosphorylations presents an outline of an FGFR3 network in the MM model and demonstrates the potential for pharmacodynamic monitoring by label-free quantitative phospho-proteomics.


Journal of Proteome Research | 2011

Primary tumor xenografts of human lung adeno and squamous cell carcinoma express distinct proteomic signatures.

Yuhong Wei; Jiefei Tong; Paul Taylor; Daniel Strumpf; Ignatchenko; Nhu-An Pham; Naoki Yanagawa; Geoffrey Liu; Igor Jurisica; Shepherd Fa; M. Tsao; Thomas Kislinger; Michael F. Moran

Nonsmall cell lung carcinoma (NSCLC) accounts for 80% of lung cancers. The most prevalent subtypes of NSCLC are adenocarcinoma (ADC) and squamous cell carcinoma (SCC), which combined account for approximately 90%. Ten resected NSCLC patient tumors (5 ADC and 5 SCC) were directly introduced into severely immune deficient (NOD-SCID) mice, and the resulting xenograft tumors were analyzed by standard histology and immunohistochemistry (IHC) and by proteomics profiling. Mass spectrometry (MS) methods involving 1- and 2-dimensional LC-MS/MS, and multiplexed selective reaction monitoring (SRM, or MRM), were applied to identify and quantify the xenograft proteomes. Hierarchical clustering of protein profiles distinguished between the ADC and SCC subtypes. The differential expression of 178 proteins, including a comprehensive panel of intermediate filament keratin proteins, was found to constitute a distinctive proteomic signature associated with the NSCLC subtypes. Epidermal growth factor receptor (EGFR) was expressed in ADC and SCC xenografts, and EGFR network activation was assessed by phosphotyrosine profiling by Western blot analysis and SRM measurement of EGFR levels, and mutation analysis. A multiplexed SRM/MRM method provided relative quantification of several keratin proteins, EGFR and plakophilin-1 in single LC-MS/MS runs. The protein quantifications by SRM and MS/MS spectral counting were associated with superior dynamic range and reproducibility but were otherwise consistent with orthogonal methods including IHC and Western immuno blotting. These findings illustrate the potential to develop a comprehensive MS-based platform in oncologic pathology for better classification and potentially treatment of NSCLC patients.


Journal of Proteome Research | 2008

Tandem immunoprecipitation of phosphotyrosine-mass spectrometry (TIPY-MS) indicates C19ORF19 becomes tyrosine-phosphorylated and associated with activated epidermal growth factor receptor.

Jiefei Tong; Paul Taylor; Eleonora Jovceva; Jonathan R. St-Germain; Lily L. Jin; Ana Nikolic; Xiaoping Gu; Zhi Hua Li; Suzanne Trudel; Michael F. Moran

To identify phosphotyrosine (pY) sites in the epidermal growth factor receptor (EGFR) network, a tandem immunoprecipitation-mass spectrometry method (TIPY-MS) was applied wherein protease-digested EGFR immune complexes were extracted with anti-pY after Rush et al. ( Nat. Biotech. 2005, 23, 94 ) and analyzed by LC-MS/MS. New pY sites in the pathway were found, including SOS1 Y1065, SOS2 Y1275, CBL-B Y889, and in the EGFR regulatory protein Mig-6 Y458. The novel human C19orf19 gene product was found EGFR-associated and phosphorylated at 5 tyrosines in response to EGFR activation and, therefore, represents a new component of the EGFR signaling network.

Collaboration


Dive into the Jiefei Tong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Sound Tsao

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Kislinger

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Geoffrey Liu

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Li

University of Toronto

View shared research outputs
Researchain Logo
Decentralizing Knowledge