Jiefeng Zhang
Nanyang Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiefeng Zhang.
Science of The Total Environment | 2013
Jiefeng Zhang; Victor Wei-Chung Chang; Apostolos Giannis; Jing-Yuan Wang
Cytostatic drugs have been widely used for chemotherapy for decades. However, many of them have been categorized as carcinogenic, mutagenic and teratogenic compounds, triggering widespread concerns about their occupational exposure and ecotoxicological risks to the environment. This review focuses on trace presence, fate and ecotoxicity of various cytostatic compounds in the environment, with an emphasis on the major sources contributing to their environmental concentrations. Past records have documented findings mainly on hospital effluents though little effort has been directed to household discharges. There is also a lack in physico-chemical data for forecasting the chemodynamics of cytostatics in natural waters along with its human metabolites and environmental transformation products. In this light, obtaining comprehensive ecotoxicity data is becoming pressingly crucial to determine their actual impacts on the ecosystem. Literature review also reveals urinary excretion as a major contributor to various cytostatic residues appeared in the water cycle. As such, engaging urine source-separation as a part of control strategy holds a rosy prospect of addressing the emerging contamination issue. State-of-the-art treatment technologies should be incorporated to further remove cytostatic residues from the source-separating urine stream. The benefits, limitations and trends of development in this domain are covered for membrane bio-reactor, reverse/forward osmosis and advanced oxidation processes. Despite the respective seeming advantages of source separation and treatment technology, a combined strategy may cost-effectively prevent the cytostatic residues from seeping into the environment. However, the combination calls for further evaluation on the associated technological, social-economic and administrative issues at hand.
Chemosphere | 2013
Bianxia Liu; Apostolos Giannis; Jiefeng Zhang; Victor Wei-Chung Chang; Jing Yuan Wang
Struvite (MgNH4PO4·6H2O) precipitation is widely used for nutrient recovery from source-separated urine in view of limited natural resources. Spontaneous struvite formation depletes the magnesium in hydrolyzed urine so that additional magnesium source is required to produce induced struvite for P-recovery. The present study investigated the morphology and purity of induced struvite crystals obtained from hydrolyzed urine by using seawater and desalination brine as low cost magnesium sources. The results demonstrated that both seawater and brine were effective magnesium sources to recover phosphorus from hydrolyzed urine. Crystals obtained from synthetic and real urine were revealed that the morphology was feather and coffin shape, respectively. Structural characterization of the precipitates confirmed that crystallized struvite was the main product. However, co-precipitates magnesium calcite and calcite were observed when seawater was added into synthetic and real urine, respectively. It was found that the presence of calcium in the magnesium sources could compromise struvite purity. Higher struvite purity could be obtained with higher Mg/Ca ratio in the magnesium source. Comparative analysis indicated that seawater and brine had similar effect on the crystallized struvite purity.
Environmental Science & Technology | 2014
Jiefeng Zhang; Qianhong She; Victor Wei-Chung Chang; Chuyang Y. Tang; Richard D. Webster
Separating urine from domestic wastewater promotes a more sustainable municipal wastewater treatment system. This study investigated the feasibility of applying a forward osmosis (FO) dewatering process for nutrient recovery from source-separated urine under different conditions, using seawater or desalination brine as a low-cost draw solution. The filtration process with the active layer facing feed solution exhibited relatively high water fluxes up to 20 L/m(2)-h. The process also revealed relatively low rejection to neutral organic nitrogen (urea-N) in fresh urine but improved rejection of ammonium (50-80%) in hydrolyzed urine and high rejection (>90%) of phosphate, potassium in most cases. Compared to simulation based on the solution-diffusion mechanism, higher water flux and solute flux were obtained using fresh or hydrolyzed urine as the feed, which was attributed to the intensive forward nutrient permeation (i.e., of urea, ammonium, and potassium). Membrane fouling could be avoided by prior removal of the spontaneously precipitated crystals in urine. Compared to other urine treatment options, the current process was cost-effective and environmentally friendly for nutrient recovery from urban wastewater at source, yet a comprehensive life-cycle impact assessment might be needed to evaluate and optimize the overall system performance at pilot and full scale operation.
Journal of The Air & Waste Management Association | 2013
Jiefeng Zhang; Apostolos Giannis; Victor Wei-Chung Chang; Bernard Jia Han Ng; Jing-Yuan Wang
Source-separating urine from other domestic wastewaters promotes a more sustainable municipal wastewater treatment system. This study investigated the feasibility and potential issues of applying a urine source-separation system in tropical urban settings. The results showed that source-separated urine underwent rapid urea-hydrolysis (ureolysis) at temperatures between 34–40oC, stale/fresh urine ratios greater than 40%, and/or with slight fecal cross-contamination. Undiluted (or low-diluted) urine favored ureolysis; this can be monitored by measuring conductivity as a reliable and efficient indicator. The optimized parameters demonstrated that an effective urine source-separation system is achievable in tropical urban areas. On the other hand, the initial release of CO2 and NH3 led to an elevated pressure in the headspace of the collection reservoir, which then dropped to a negative value, primarily due to oxygen depletion by the microbial activity in the gradually alkalized urine. Another potential odor source during the ureolysis process was derived from the high production of volatile fatty acids (VFA), which were mainly acetic, propanoic, and butyric acids. Health concerns related to odor issues might limit the application of source separation systems in urban areas; it is therefore vital to systematically monitor and control the odor emissions from a source separation system. As such, an enhanced ureolysis process can attenuate the odor emissions. Implications: Urine source separation is promising to improve the management of domestic wastewater in a more sustainable way. The work demonstrates the achievability of an effective urine source-separation system in tropical urban areas. The installation of urine-stabilization tanks beneath high-rise buildings lowers the risk of pipe clogging. Conductivity measurement can be utilized as a reliable process indicator for an automated system. However, urine hydrolysis raises a strong potential of odor emission (both inorganic and organic), which might limit the application of source separation systems in urban areas. An enhanced ureolysis process could shorten and attenuate the odor emissions.
Indoor Air | 2015
B. Han; Z. Bai; Yating Liu; Yan You; Jingjun Xu; Jian Zhou; Jiefeng Zhang; Can Niu; Nan Zhang; F. He; Xiao Ding
Polycyclic aromatic hydrocarbons (PAHs) are among the most toxic air pollutants in China. However, because there are unsubstantial data on indoor and outdoor particulate PAHs, efforts in assessing inhalation exposure and cancer risk to PAHs are limited in China. This study measured 12 individual PAHs in indoor and outdoor environments at 36 homes during the non-heating period and heating period in 2009. Indoor PAH concentrations were comparable with outdoor environments in the non-heating period, but were lower in the heating period. The average indoor/outdoor ratios in both sampling periods were lower than 1, while the ratios in the non-heating period were higher than those in the heating period. Correlation analysis and coefficient of divergence also verified the difference between indoor and outdoor PAHs, which could be caused by high ventilation in the non-heating period. To support this conclusion, linear and robust regressions were used to estimate the infiltration factor to compare outdoor PAHs to indoor PAHs. The calculated infiltration factors obtained by the two models were similar in the non-heating period but varied greatly in the heating period, which may have been caused by the influence of ventilation. Potential sources were distinguished using a diagnostic ratio and a mixture of coal combustion and traffic emission, which are major sources of PAHs.
Journal of Hazardous Materials | 2017
Yiqing Zhang; Jiefeng Zhang; Yongjun Xiao; Victor Wei-Chung Chang; Teik-Thye Lim
The ever-increasing consumption of various cytostatic drugs (CSDs) has attracted growing public concern in recent years. The photodegradation of 8 CSDs was investigated using a low-pressure UV-254Hg lamp, resulting in fluence-based first-order kinetic rate constants in the range of (0.20-6.97)×10-4cm2mJ-1. The influence of water matrix components, including natural dissolved organic matter (DOM), bicarbonate (HCO3-), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-), was investigated. The degradation rates of CSDs decrease in the presence of DOM due to the competition for the UV light, but increase with addition of NO3- due to an indirect production of HO. Further investigation was carried out to evaluate the viability of UV treatment performances using two real water samples, namely treated water from a water treatment plant and secondary effluent from a wastewater treatment plant. The primary photodegradation byproducts of CSDs were identified using LC/MS/MS to investigate the mechanism of direct UV photolysis and indirect NO3--induced and DOM-induced photolysis. The degradation rates of CSDs increase significantly with the addition of H2O2 or S2O82- under UV irradiation, due to the generation of non-selective HO or selective SO4-. As an electrophilic radical, SO4- mainly reacts via electron transfer and selectively attacks certain electron-donating functional groups of CSDs.
Science of The Total Environment | 2016
Jia Xu; Nan Zhang; Bin Han; Yan You; Jian Zhou; Jiefeng Zhang; Can Niu; Yating Liu; Fei He; Xiao Ding; Zhipeng Bai
Using central site measurement data to predict personal exposure to particulate matter (PM) is challenging, because people spend most of their time indoors and ambient contribution to personal exposure is subject to infiltration conditions affected by many factors. Efforts in assessing and predicting exposure on the basis of associated indoor/outdoor and central site monitoring were limited in China. This study collected daily personal exposure, residential indoor/outdoor and community central site PM filter samples in an elderly community during the non-heating and heating periods in 2009 in Tianjin, China. Based on the chemical analysis results of particulate species, mass concentrations of the particulate compounds were estimated and used to reconstruct the PM mass for mass balance analysis. The infiltration factors (Finf) of particulate compounds were estimated using both robust regression and mixed effect regression methods, and further estimated the exposure factor (Fpex) according to participants time-activity patterns. Then an empirical exposure model was developed to predict personal exposure to PM and particulate compounds as the sum of ambient and non-ambient contributions. Results showed that PM mass observed during the heating period could be well represented through chemical mass reconstruction, because unidentified mass was minimal. Excluding the high observations (>300μg/m3), this empirical exposure model performed well for PM and elemental carbon (EC) that had few indoor sources. These results support the use of Fpex as an indicator for ambient contribution predictions, and the use of empirical non-ambient contribution to assess exposure to particulate compounds.
Environmental Science and Pollution Research | 2016
Bin Han; Yating Liu; Yan You; Jia Xu; Jian Zhou; Jiefeng Zhang; Can Niu; Nan Zhang; Fei He; Xiao Ding; Zhipeng Bai
Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is limited by the lack of environmental exposure data among different subpopulations. To assess the exposure cancer risk of particulate carcinogenic polycyclic aromatic hydrocarbon pollution for the elderly, this study conducted a personal exposure measurement campaign for particulate PAHs in a community of Tianjin, a city in northern China. Personal exposure samples were collected from the elderly in non-heating (August–September, 2009) and heating periods (November–December, 2009), and 12 PAHs individuals were analyzed for risk estimation. Questionnaire and time-activity log were also recorded for each person. The probabilistic risk assessment model was integrated with Toxic Equivalent Factors (TEFs). Considering that the estimation of the applied dose for a given air pollutant is dependent on the inhalation rate, the inhalation rate from both EPA exposure factor book was applied to calculate the carcinogenic risk in this study. Monte Carlo simulation was used as a probabilistic risk assessment model, and risk simulation results indicated that the inhalation-ILCR values for both male and female subjects followed a lognormal distribution with a mean of 4.81u2009×u200910−6 and 4.57u2009×u200910−6, respectively. Furthermore, the 95xa0% probability lung cancer risks were greater than the USEPA acceptable level of 10−6 for both men and women through the inhalation route, revealing that exposure to PAHs posed an unacceptable potential cancer risk for the elderly in this study. As a result, some measures should be taken to reduce PAHs pollution and the exposure level to decrease the cancer risk for the general population, especially for the elderly.
Journal of Environmental Sciences-china | 2017
Bianxia Liu; Apostolos Giannis; Ailu Chen; Jiefeng Zhang; Victor Wei-Chung Chang; Jing-Yuan Wang
Source separation sanitation systems have attracted more and more attention recently. However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid such issues, it is necessary to monitor the odor related compounds that might be generated during urine storage. This study investigated the odorous compounds that emitted from source-separated human urine under different hydrolysis conditions. Batch experiments were conducted to investigate the effect of temperature, stale/fresh urine ratio and urine dilution on odor emissions. It was found that ammonia, dimethyl disulfide, allyl methyl sulfide and 4-heptanone were the main odorous compounds generated from human urine, with headspace concentrations hundreds of times higher than their respective odor thresholds. Furthermore, the high temperature accelerated urine hydrolysis and liquid-gas mass transfer, resulting a remarkable increase of odor emissions from the urine solution. The addition of stale urine enhanced urine hydrolysis and expedited odor emissions. On the contrary, diluted urine emitted less odorous compounds ascribed to reduced concentrations of odorant precursors. In addition, this study quantified the odor emissions and revealed the constraints of urine source separation in real-world applications. To address the odor issue, several control strategies are recommended for odor mitigation or elimination from an engineering perspective.
Journal of Chemical Technology & Biotechnology | 2015
Bianxia Liu; Apostolos Giannis; Jiefeng Zhang; Victor Wei-Chung Chang; Jing-Yuan Wang