Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiemin Ma is active.

Publication


Featured researches published by Jiemin Ma.


CA: A Cancer Journal for Clinicians | 2014

Cancer statistics, 2014

Rebecca L. Siegel; Jiemin Ma; Zhaohui Zou; Ahmedin Jemal

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries and mortality data were collected by the National Center for Health Statistics. A total of 1,665,540 new cancer cases and 585,720 cancer deaths are projected to occur in the United States in 2014. During the most recent 5 years for which there are data (2006‐2010), delay‐adjusted cancer incidence rates declined slightly in men (by 0.6% per year) and were stable in women, while cancer death rates decreased by 1.8% per year in men and by 1.4% per year in women. The combined cancer death rate (deaths per 100,000 population) has been continuously declining for 2 decades, from a peak of 215.1 in 1991 to 171.8 in 2010. This 20% decline translates to the avoidance of approximately 1,340,400 cancer deaths (952,700 among men and 387,700 among women) during this time period. The magnitude of the decline in cancer death rates from 1991 to 2010 varies substantially by age, race, and sex, ranging from no decline among white women aged 80 years and older to a 55% decline among black men aged 40 years to 49 years. Notably, black men experienced the largest drop within every 10‐year age group. Further progress can be accelerated by applying existing cancer control knowledge across all segments of the population. CA Cancer J Clin 2014;64:9–29.


Archive | 2013

Breast Cancer Statistics

Jiemin Ma; Ahmedin Jemal

Among U.S. women, breast cancer is the most commonly diagnosed cancer (excluding skin cancers) and the second leading cause of cancer death, following lung cancer. In 2012, an estimated 226,870 new cases of invasive breast cancer and 39,510 breast cancer deaths are expected to occur among U.S. women. Breast cancer rates vary largely by race/ethnicity and socioeconomic status (SES), and geographic region. Death rates are higher in African American women than in whites, despite their lower incidence rates. Historically, breast cancer was recognized as a disease of western countries. However, over the past 20 years, breast cancer incidence and mortality rates have been increasing rapidly in economically less developed regions. According to 2008 GLOBOCAN estimates, half of the new worldwide breast cancer cases (1.38 million) and 60 % of the breast cancer deaths (458,000) occurred in developing countries. This chapter reviews breast cancer incidence and mortality patterns among women in the U.S. and worldwide, and the possible explanations for these patterns.


CA: A Cancer Journal for Clinicians | 2011

Breast Cancer Statistics, 2013

Carol DeSantis; Jiemin Ma; Leah Bryan; Ahmedin Jemal

In this article, the American Cancer Society provides an overview of female breast cancer statistics in the United States, including trends in incidence, mortality, survival, and screening. Approximately 230,480 new cases of invasive breast cancer and 39,520 breast cancer deaths are expected to occur among US women in 2011. Breast cancer incidence rates were stable among all racial/ethnic groups from 2004 to 2008. Breast cancer death rates have been declining since the early 1990s for all women except American Indians/Alaska Natives, among whom rates have remained stable. Disparities in breast cancer death rates are evident by state, socioeconomic status, and race/ethnicity. While significant declines in mortality rates were observed for 36 states and the District of Columbia over the past 10 years, rates for 14 states remained level. Analyses by county‐level poverty rates showed that the decrease in mortality rates began later and was slower among women residing in poor areas. As a result, the highest breast cancer death rates shifted from the affluent areas to the poor areas in the early 1990s. Screening rates continue to be lower in poor women compared with non‐poor women, despite much progress in increasing mammography utilization. In 2008, 51.4% of poor women had undergone a screening mammogram in the past 2 years compared with 72.8% of non‐poor women. Encouraging patients aged 40 years and older to have annual mammography and a clinical breast examination is the single most important step that clinicians can take to reduce suffering and death from breast cancer. Clinicians should also ensure that patients at high risk of breast cancer are identified and offered appropriate screening and follow‐up. Continued progress in the control of breast cancer will require sustained and increased efforts to provide high‐quality screening, diagnosis, and treatment to all segments of the population. CA Cancer J Clin 2011;.


CA: A Cancer Journal for Clinicians | 2014

Breast cancer statistics, 2013: Breast Cancer Statistics, 2013

Carol DeSantis; Jiemin Ma; Leah Bryan; Ahmedin Jemal

In this article, the American Cancer Society provides an overview of female breast cancer statistics in the United States, including data on incidence, mortality, survival, and screening. Approximately 232,340 new cases of invasive breast cancer and 39,620 breast cancer deaths are expected to occur among US women in 2013. One in 8 women in the United States will develop breast cancer in her lifetime. Breast cancer incidence rates increased slightly among African American women; decreased among Hispanic women; and were stable among whites, Asian Americans/Pacific Islanders, and American Indians/Alaska Natives from 2006 to 2010. Historically, white women have had the highest breast cancer incidence rates among women aged 40 years and older; however, incidence rates are converging among white and African American women, particularly among women aged 50 years to 59 years. Incidence rates increased for estrogen receptor‐positive breast cancers in the youngest white women, Hispanic women aged 60 years to 69 years, and all but the oldest African American women. In contrast, estrogen receptor‐negative breast cancers declined among most age and racial/ethnic groups. These divergent trends may reflect etiologic heterogeneity and the differing effects of some factors, such as obesity and parity, on risk by tumor subtype. Since 1990, breast cancer death rates have dropped by 34% and this decrease was evident in all racial/ethnic groups except American Indians/Alaska Natives. Nevertheless, survival disparities persist by race/ethnicity, with African American women having the poorest breast cancer survival of any racial/ethnic group. Continued progress in the control of breast cancer will require sustained and increased efforts to provide high‐quality screening, diagnosis, and treatment to all segments of the population. CA Cancer J Clin 2014;64:52–62.


Cancer | 2016

Annual Report to the Nation on the Status of Cancer,1975-2012, Featuring the Increasing Incidence of Liver Cancer

A. Blythe Ryerson; Christie R. Eheman; Sean F. Altekruse; John W. Ward; Ahmedin Jemal; Recinda Sherman; S. Jane Henley; Deborah Holtzman; Andrew J. Lake; Anne-Michelle Noone; Robert N. Anderson; Jiemin Ma; Kathleen N. Ly; Kathleen A. Cronin; Lynne Penberthy; Betsy A. Kohler

Annual updates on cancer occurrence and trends in the United States are provided through an ongoing collaboration among the American Cancer Society (ACS), the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR). This annual report highlights the increasing burden of liver and intrahepatic bile duct (liver) cancers.


JAMA | 2015

Prostate Cancer Incidence and PSA Testing Patterns in Relation to USPSTF Screening Recommendations

Ahmedin Jemal; Stacey A. Fedewa; Jiemin Ma; Rebecca L. Siegel; Chun Chieh Lin; Otis W. Brawley; Elizabeth Ward

IMPORTANCE Prostate cancer incidence in men 75 years and older substantially decreased following the 2008 US Preventive Services Task Force (USPSTF) recommendation against prostate-specific antigen (PSA)-based screening for this age group. It is unknown whether incidence has changed since the USPSTF recommendation against screening for all men in May 2012. OBJECTIVE To examine recent changes in stage-specific prostate cancer incidence and PSA screening rates following the 2008 and 2012 USPSTF recommendations. DESIGN AND SETTINGS Ecologic study of age-standardized prostate cancer incidence (newly diagnosed cases/100,000 men aged ≥50 years) by stage from 2005 through 2012 using data from 18 population-based Surveillance, Epidemiology, and End Results (SEER) registries and PSA screening rate in the past year among men 50 years and older without a history of prostate cancer who responded to the 2005 (n = 4580), 2008 (n = 3476), 2010 (n = 4157), and 2013 (n = 6172) National Health Interview Survey (NHIS). EXPOSURES The USPSTF recommendations to omit PSA-based screening for average-risk men. MAIN OUTCOMES AND MEASURES Prostate cancer incidence and incidence ratios (IRs) comparing consecutive years from 2005 through 2012 by age (≥50, 50-74, and ≥75 years) and SEER summary stage categorized as local/regional or distant and PSA screening rate and rate ratios (SRRs) comparing successive survey years by age. RESULTS Prostate cancer incidence per 100,000 in men 50 years and older (N = 446,009 in SEER areas) was 534.9 in 2005, 540.8 in 2008, 505.0 in 2010, and 416.2 in 2012; rates began decreasing in 2008 and the largest decrease occurred between 2011 and 2012, from 498.3 (99% CI, 492.8-503.9) to 416.2 (99% CI, 411.2-421.2). The number of men 50 years and older diagnosed with prostate cancer nationwide declined by 33,519, from 213,562 men in 2011 to 180,043 men in 2012. Declines in incidence since 2008 were confined to local/regional-stage disease and were similar across age and race/ethnicity groups. The percentage of men 50 years and older reporting PSA screening in the past 12 months was 36.9% in 2005, 40.6% in 2008, 37.8% in 2010, and 30.8% in 2013. In relative terms, screening rates increased by 10% (SRR, 1.10; 99% CI, 1.01-1.21) between 2005 and 2008 and then decreased by 18% (SRR, 0.82; 99% CI, 0.75-0.89) between 2010 and 2013. Similar screening patterns were found in age subgroups 50 to 74 years and 75 years and older. CONCLUSIONS AND RELEVANCE Both the incidence of early-stage prostate cancer and rates of PSA screening have declined and coincide with 2012 USPSTF recommendation to omit PSA screening from routine primary care for men. Longer follow-up is needed to see whether these decreases are associated with trends in mortality.


Journal of the National Cancer Institute | 2017

Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival

Ahmedin Jemal; Elizabeth Ward; Christopher J. Johnson; Kathleen A. Cronin; Jiemin Ma; A. Blythe Ryerson; Angela B. Mariotto; Andrew J. Lake; Reda Wilson; Recinda Sherman; Robert N. Anderson; S. Jane Henley; Betsy A. Kohler; Lynne Penberthy; Eric J. Feuer; Hannah K. Weir

Abstract Background: The American Cancer Society (ACS), the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR) collaborate to provide annual updates on cancer occurrence and trends in the United States. This Annual Report highlights survival rates. Methods: Data were from the CDC- and NCI-funded population-based cancer registry programs and compiled by NAACCR. Trends in age-standardized incidence and death rates for all cancers combined and for the leading cancer types by sex were estimated by joinpoint analysis and expressed as annual percent change. We used relative survival ratios and adjusted relative risk of death after a diagnosis of cancer (hazard ratios [HRs]) using Cox regression model to examine changes or differences in survival over time and by sociodemographic factors. Results: Overall cancer death rates from 2010 to 2014 decreased by 1.8% (95% confidence interval [CI] = –1.8 to –1.8) per year in men, by 1.4% (95% CI = –1.4 to –1.3) per year in women, and by 1.6% (95% CI = –2.0 to –1.3) per year in children. Death rates decreased for 11 of the 16 most common cancer types in men and for 13 of the 18 most common cancer types in women, including lung, colorectal, female breast, and prostate, whereas death rates increased for liver (men and women), pancreas (men), brain (men), and uterine cancers. In contrast, overall incidence rates from 2009 to 2013 decreased by 2.3% (95% CI = –3.1 to –1.4) per year in men but stabilized in women. For several but not all cancer types, survival statistically significantly improved over time for both early and late-stage diseases. Between 1975 and 1977, and 2006 and 2012, for example, five-year relative survival for distant-stage disease statistically significantly increased from 18.7% (95% CI = 16.9% to 20.6%) to 33.6% (95% CI = 32.2% to 35.0%) for female breast cancer but not for liver cancer (from 1.1%, 95% CI = 0.3% to 2.9%, to 2.3%, 95% CI = 1.6% to 3.2%). Survival varied by race/ethnicity and state. For example, the adjusted relative risk of death for all cancers combined was 33% (HR = 1.33, 95% CI = 1.32 to 1.34) higher in non-Hispanic blacks and 51% (HR = 1.51, 95% CI = 1.46 to 1.56) higher in non-Hispanic American Indian/Alaska Native compared with non-Hispanic whites. Conclusions: Cancer death rates continue to decrease in the United States. However, progress in reducing death rates and improving survival is limited for several cancer types, underscoring the need for intensified efforts to discover new strategies for prevention, early detection, and treatment and to apply proven preventive measures broadly and equitably.


Cancer | 2013

Annual number of lung cancer deaths potentially avertable by screening in the United States

Jiemin Ma; Elizabeth Ward; Robert A. Smith; Ahmedin Jemal

The National Lung Screening Trial (NLST), which was conducted between 2002 and 2009, demonstrated that screening with low‐dose computed tomography (LDCT) reduced lung cancer mortality by 20% among screening‐eligible populations compared with chest x‐ray. In this article, the authors provide an estimate of the annual number of lung cancer deaths that can be averted by screening, assuming the screening regimens adopted in the NLST are fully implemented in the United States.


Journal of the National Cancer Institute | 2017

Colorectal Cancer Incidence Patterns in the United States, 1974–2013

Rebecca L. Siegel; Stacey A. Fedewa; William F. Anderson; Kimberly D. Miller; Jiemin Ma; Philip S. Rosenberg; Ahmedin Jemal

Background: Colorectal cancer (CRC) incidence in the United States is declining rapidly overall but, curiously, is increasing among young adults. Age-specific and birth cohort patterns can provide etiologic clues, but have not been recently examined. Methods: CRC incidence trends in Surveillance, Epidemiology, and End Results areas from 1974 to 2013 (n = 490 305) were analyzed by five-year age group and birth cohort using incidence rate ratios (IRRs) and age-period-cohort modeling. Results: After decreasing in the previous decade, colon cancer incidence rates increased by 1.0% to 2.4% annually since the mid-1980s in adults age 20 to 39 years and by 0.5% to 1.3% since the mid-1990s in adults age 40 to 54 years; rectal cancer incidence rates have been increasing longer and faster (eg, 3.2% annually from 1974–2013 in adults age 20–29 years). In adults age 55 years and older, incidence rates generally declined since the mid-1980s for colon cancer and since 1974 for rectal cancer. From 1989–1990 to 2012–2013, rectal cancer incidence rates in adults age 50 to 54 years went from half those in adults age 55 to 59 to equivalent (24.7 vs 24.5 per 100 000 persons: IRR = 1.01, 95% confidence interval [CI] = 0.92 to 1.10), and the proportion of rectal cancer diagnosed in adults younger than age 55 years doubled from 14.6% (95% CI = 14.0% to 15.2%) to 29.2% (95% CI = 28.5% to 29.9%). Age-specific relative risk by birth cohort declined from circa 1890 until 1950, but continuously increased through 1990. Consequently, compared with adults born circa 1950, those born circa 1990 have double the risk of colon cancer (IRR = 2.40, 95% CI = 1.11 to 5.19) and quadruple the risk of rectal cancer (IRR = 4.32, 95% CI = 2.19 to 8.51). Conclusions: Age-specific CRC risk has escalated back to the level of those born circa 1890 for contemporary birth cohorts, underscoring the need for increased awareness among clinicians and the general public, as well as etiologic research to elucidate causes for the trend. Further, as nearly one-third of rectal cancer patients are younger than age 55 years, screening initiation before age 50 years should be considered.


CA: A Cancer Journal for Clinicians | 2017

Breast cancer statistics, 2017, racial disparity in mortality by state

Carol DeSantis; Jiemin Ma; Ann Goding Sauer; Lisa A. Newman; Ahmedin Jemal

In this article, the American Cancer Society provides an overview of female breast cancer statistics in the United States, including data on incidence, mortality, survival, and screening. Approximately 252,710 new cases of invasive breast cancer and 40,610 breast cancer deaths are expected to occur among US women in 2017. From 2005 to 2014, overall breast cancer incidence rates increased among Asian/Pacific Islander (1.7% per year), non‐Hispanic black (NHB) (0.4% per year), and Hispanic (0.3% per year) women but were stable in non‐Hispanic white (NHW) and American Indian/Alaska Native (AI/AN) women. The increasing trends were driven by increases in hormone receptor‐positive breast cancer, which increased among all racial/ethnic groups, whereas rates of hormone receptor‐negative breast cancers decreased. From 1989 to 2015, breast cancer death rates decreased by 39%, which translates to 322,600 averted breast cancer deaths in the United States. During 2006 to 2015, death rates decreased in all racial/ethnic groups, including AI/ANs. However, NHB women continued to have higher breast cancer death rates than NHW women, with rates 39% higher (mortality rate ratio [MRR], 1.39; 95% confidence interval [CI], 1.35‐1.43) in NHB women in 2015, although the disparity has ceased to widen since 2011. By state, excess death rates in black women ranged from 20% in Nevada (MRR, 1.20; 95% CI, 1.01‐1.42) to 66% in Louisiana (MRR, 1.66; 95% CI, 1.54, 1.79). Notably, breast cancer death rates were not significantly different in NHB and NHW women in 7 states, perhaps reflecting an elimination of disparities and/or a lack of statistical power. Improving access to care for all populations could eliminate the racial disparity in breast cancer mortality and accelerate the reduction in deaths from this malignancy nationwide. CA Cancer J Clin 2017;67:439‐448.

Collaboration


Dive into the Jiemin Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert N. Anderson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen A. Cronin

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge