Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jieru Wan is active.

Publication


Featured researches published by Jieru Wan.


Free Radical Biology and Medicine | 2016

Cerebroprotection of Flavanol (−)-Epicatechin after Traumatic Brain Injury via Nrf2-dependent and –independent Pathways

Tian Cheng; Wenzhu Wang; Qian Li; Xiaoning Han; Jing Xing; Cunfang Qi; Xi Lan; Jieru Wan; Alexa Potts; Fangxia Guan; Jian Wang

Traumatic brain injury (TBI), which leads to disability, dysfunction, and even death, is a prominent health problem worldwide with no effective treatment. A brain-permeable flavonoid named (-)-epicatechin (EC) modulates redox/oxidative stress and has been shown to be beneficial for vascular and cognitive function in humans and for ischemic and hemorrhagic stroke in rodents. Here we examined whether EC is able to protect the brain against TBI-induced brain injury in mice and if so, whether it exerts neuroprotection by modulating the NF-E2-related factor (Nrf2) pathway. We used the controlled cortical impact model to mimic TBI. EC was administered orally at 3h after TBI and then every 24h for either 3 or 7 days. We evaluated lesion volume, brain edema, white matter injury, neurologic deficits, cognitive performance and emotion-like behaviors, neutrophil infiltration, reactive oxygen species (ROS), and a variety of injury-related protein markers. Nrf2 knockout mice were used to determine the role of the Nrf2 signaling pathway after EC treatment. In wild-type mice, EC significantly reduced lesion volume, edema, and cell death and improved neurologic function on days 3 and 28; cognitive performance and depression-like behaviors were also improved with EC administration. In addition, EC reduced white matter injury, heme oxygenase-1 expression, and ferric iron deposition after TBI. These changes were accompanied by attenuation of neutrophil infiltration and oxidative insults, reduced activity of matrix metalloproteinase 9, decreased Keap 1 expression, increased Nrf2 nuclear accumulation, and increased expression of superoxide dismutase 1 and quinone 1. However, EC did not significantly reduce lesion volume or improve neurologic deficits in Nrf2 knockout mice after TBI. Our results show that EC protects the TBI brain by activating the Nrf2 pathway, inhibiting heme oxygenase-1 protein expression, and reducing iron deposition. The latter two effects could represent an Nrf2-independent mechanism in this model of TBI.


JCI insight | 2017

Inhibition of neuronal ferroptosis protects hemorrhagic brain

Qian Li; Xiaoning Han; Xi Lan; Yufeng Gao; Jieru Wan; Frederick Durham; Tian Cheng; Jie Yang; Zhongyu Wang; Chao Jiang; Mingyao Ying; Raymond C. Koehler; Brent R. Stockwell; Jian Wang

Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of PTGS2 and its gene product cyclooxygenase-2 ex vivo and in vivo. Moreover, ferrostatin-1 in combination with other inhibitors that target different forms of cell death prevented hemoglobin-induced cell death in OHSCs and human induced pluripotent stem cell-derived neurons better than any inhibitor alone. These results indicate that ferroptosis contributes to neuronal death after ICH, that administration of ferrostatin-1 protects hemorrhagic brain, and that cyclooxygenase-2 could be a biomarker of ferroptosis. The insights gained from this study will advance our knowledge of the post-ICH cell death cascade and be essential for future preclinical studies.


Brain Behavior and Immunity | 2017

Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia

Xi Lan; Xiaoning Han; Qian Li; Qiang Li; Yufeng Gao; Tian Cheng; Jieru Wan; Wei Zhu; Jian Wang

Neuroinflammation is a major contributor to intracerebral hemorrhage (ICH) progression, but no drug is currently available to reduce this response and protect against ICH-induced injury. Recently, the natural product pinocembrin has been shown to ameliorate neuroinflammation and is undergoing a phase II clinical trial for ischemic stroke treatment. In this study, we examined the efficacy of pinocembrin in an ICH model, and further examined its effect on microglial activation and polarization. In vivo, pinocembrin dose-dependently reduced lesion volume by ∼47.5% and reduced neurologic deficits of mice at 72h after collagenase-induced ICH. The optimal dose of pinocembrin (5mg/kg) suppressed microglial activation as evidenced by decreases in CD68-positive microglia and reduced proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. Pinocembrin also reduced the number of classically activated M1-like microglia without affecting M2-like microglia in the perilesional region. Additionally, pinocembrin decreased the expression of toll-like receptor (TLR)4 and its downstream target proteins TRIF and MyD88. The protection by pinocembrin was lost in microglia-depleted mice and in TLR4lps-del mice, and pinocembrin failed to decrease the number of M1-like microglia in TLR4lps-del mice. In lipopolysaccharide-stimulated BV-2 cells or primary microglia, pinocembrin decreased M1-related cytokines and markers (IL-1β, IL-6, TNF-α, and iNOS), NF-κB activation, and TLR4 expression, but it did not interfere with TLR4/MyD88 and TLR4/TRIF interactions or affect microglial phagocytosis of red blood cells. Inhibition of the TLR4 signaling pathway and reduction in M1-like microglial polarization might be the major mechanism by which pinocembrin protects hemorrhagic brain. With anti-inflammatory properties, pinocembrin could be a promising new drug candidate for treating ICH and other acute brain injuries.


Scientific Reports | 2017

Multimodality MRI assessment of grey and white matter injury and blood-brain barrier disruption after intracerebral haemorrhage in mice

Jie Yang; Qian Li; Zhongyu Wang; Cunfang Qi; Xiaoning Han; Xi Lan; Jieru Wan; Wenzhu Wang; Xiaochun Zhao; Zhipeng Hou; Cong Gao; J. Ricardo Carhuapoma; Susumu Mori; Jiangyang Zhang; Jian Wang

In this study, we examined injury progression after intracerebral haemorrhage (ICH) induced by collagenase in mice using a preclinical 11.7 Tesla MRI system. On T2-weighted MRI, lesion and striatal volumes were increased on day 3 and then decreased from days 7 to 28. On day 3, with an increase in striatal water content, vasogenic oedema in the perihaematomal region presented as increased T2 and increased apparent diffusion coefficient (ADC) signal. With a synchronous change in T2 and ADC signals, microglial activation peaked on day 3 in the same region and decreased over time. Iron deposition appeared on day 3 around the haematoma border but did not change synchronously with ADC signals. Vascular permeability measured by Evans blue extravasation on days 1, 3, and 7 correlated with the T1-gadolinium results, both of which peaked on day 3. On diffusion tensor imaging, white matter injury was prominent in the corpus callosum and internal capsule on day 3 and then partially recovered over time. Our results indicate that the evolution of grey/white matter injury and blood-brain barrier disruption after ICH can be assessed with multimodal MRI, and that perihaematomal vasogenic oedema might be attributable to microglial activation, iron deposition, and blood-brain barrier breakdown.


Journal of Cerebral Blood Flow and Metabolism | 2017

Cerebroprotection by the neuronal PGE2 receptor EP2 after intracerebral hemorrhage in middle-aged mice.

He Wu; Tao Wu; Xiaoning Han; Jieru Wan; Chao Jiang; Wenwu Chen; Hong Lu; Qing-Wu Yang; Jian Wang

Inflammatory responses mediated by prostaglandins such as PGE2 may contribute to secondary brain injury after intracerebral hemorrhage (ICH). However, the cell-specific signaling by PGE2 receptor EP2 differs depending on whether the neuropathic insult is acute or chronic. Using genetic and pharmacologic approaches, we investigated the role of EP2 receptor in two mouse models of ICH induced by intrastriatal injection of collagenase or autologous arterial whole blood. We used middle-aged male mice to enhance the clinical relevance of the study. EP2 receptor was expressed in neurons but not in astrocytes or microglia after collagenase-induced ICH. Brain injury after collagenase-induced ICH was associated with enhanced cellular and molecular inflammatory responses, oxidative stress, and matrix metalloproteinase (MMP)-2/9 activity. EP2 receptor deletion exacerbated brain injury, brain swelling/edema, neuronal death, and neurobehavioral deficits, whereas EP2 receptor activation by the highly selective agonist AE1-259-01 reversed these outcomes. EP2 receptor deletion also exacerbated brain edema and neurologic deficits in the blood ICH model. These findings support the premise that neuronal EP2 receptor activation by PGE2 protects brain against ICH injury in middle-aged mice through its anti-inflammatory and anti-oxidant effects and anti-MMP-2/9 activity. PGE2/EP2 signaling warrants further investigation for potential use in ICH treatment.


Neurobiology of Aging | 2016

Progesterone exerts neuroprotective effects and improves long-term neurologic outcome after intracerebral hemorrhage in middle-aged mice

Chao Jiang; Fangfang Zuo; Yuejuan Wang; Jieru Wan; Zengjin Yang; Hong Lu; Wenwu Chen; Weidong Zang; Qing-Wu Yang; Jian Wang

In this study, we examined the effect of progesterone on histopathologic and functional outcomes of intracerebral hemorrhage (ICH) in 10- to 12-month-old mice. Progesterone or vehicle was administered by intraperitoneal injection 1 hour after collagenase-induced ICH and then by subcutaneous injections at 6, 24, and 48 hours. Oxidative and nitrosative stress were assayed at 12 hours post-ICH. Injury markers were examined on day 1, and lesion was examined on day 3. Neurologic deficits were examined for 28 days. Progesterone posttreatment reduced lesion volume, brain swelling, edema, and cell degeneration and improved long-term neurologic function. These protective effects were associated with reductions in protein carbonyl formation, protein nitrosylation, and matrix metalloproteinase-9 activity and attenuated cellular and molecular inflammatory responses. Progesterone also reduced vascular endothelial growth factor expression, increased neuronal-specific Na(+)/K(+) ATPase ɑ3 subunit expression, and reduced protein kinase C-dependent Na(+)/K(+) ATPase phosphorylation. Furthermore, progesterone reduced glial scar thickness, myelin loss, brain atrophy, and residual injury volume on day 28 after ICH. With multiple brain targets, progesterone warrants further investigation for its potential use in ICH therapy.


Journal of Cerebral Blood Flow and Metabolism | 2017

Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice:

Qian Li; Jieru Wan; Xi Lan; Xiaoning Han; Zhongyu Wang; Jian Wang

Iron overload plays a key role in the secondary brain damage that develops after intracerebral hemorrhage (ICH). The significant increase in iron deposition is associated with the generation of reactive oxygen species (ROS), which leads to oxidative brain damage. In this study, we examined the protective effects of VK-28, a brain-permeable iron chelator, against hemoglobin toxicity in an ex vivo organotypic hippocampal slice culture (OHSC) model and in middle-aged mice subjected to an in vivo, collagenase-induced ICH model. We found that the effects of VK-28 were similar to those of deferoxamine (DFX), a well-studied iron chelator. Both decreased cell death and ROS production in OHSCs and in vivo, decreased iron-deposition and microglial activation around hematoma in vivo, and improved neurologic function. Moreover, compared with DFX, VK-28 polarized microglia to an M2-like phenotype, reduced brain water content, deceased white matter injury, improved neurobehavioral performance, and reduced overall death rate after ICH. The protection of VK-28 was confirmed in a blood-injection ICH model and in aged-male and young female mice. Our findings indicate that VK-28 is protective against iron toxicity after ICH and that, at the dosage tested, it has better efficacy and less toxicity than DFX does.


Journal of Cerebral Blood Flow and Metabolism | 2018

20-HETE synthesis inhibition promotes cerebral protection after intracerebral hemorrhage without inhibiting angiogenesis

Xiaoning Han; Xiaochun Zhao; Xi Lan; Qian Li; Yufeng Gao; Xi Liu; Jieru Wan; Zengjin Yang; Xuemei Chen; Weidong Zang; Austin M. Guo; John R. Falck; Raymond C. Koehler; Jian Wang

20-HETE, an arachidonic acid metabolite synthesized by cytochrome P450 4A, plays an important role in acute brain damage from ischemic stroke or subarachnoid hemorrhage. We tested the hypothesis that 20-HETE inhibition has a protective effect after intracerebral hemorrhage (ICH) and then investigated its effect on angiogenesis. We exposed hippocampal slice cultures to hemoglobin and induced ICH in mouse brains by intrastriatal collagenase injection to investigate the protective effect of 20-HETE synthesis inhibitor N-hydroxy-N′-(4-n-butyl-2-methylphenyl)-formamidine (HET0016). Hemoglobin-induced neuronal death was assessed by propidium iodide after 18 h in vitro. Lesion volume, neurologic deficits, cell death, reactive oxygen species (ROS), neuroinflammation, and angiogenesis were evaluated at different time points after ICH. In cultured mouse hippocampal slices, HET0016 attenuated hemoglobin-induced neuronal death and decreased levels of proinflammatory cytokines and ROS. In vivo, HET0016 reduced brain lesion volume and neurologic deficits, and decreased neuronal death, ROS production, gelatinolytic activity, and the inflammatory response at three days after ICH. However, HET0016 did not inhibit angiogenesis, as levels of CD31, VEGF, and VEGFR2 were unchanged on day 28. We conclude that 20-HETE is involved in ICH-induced brain damage. Inhibition of 20-HETE synthesis may provide a viable means to mitigate ICH injury without inhibition of angiogenesis.


Brain Behavior and Immunity | 2018

Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse

Wei Zhu; Yufeng Gao; Jieru Wan; Xi Lan; Xiaoning Han; Shanshan Zhu; Weidong Zang; Xuemei Chen; Wendy C. Ziai; Daniel F. Hanley; Scott J. Russo; Ricardo E. Jorge; Jian Wang

Intracerebral hemorrhage (ICH) is a detrimental type of stroke. Mouse models of ICH, induced by collagenase or blood infusion, commonly target striatum, but not other brain sites such as ventricular system, cortex, and hippocampus. Few studies have systemically investigated brain damage and neurobehavioral deficits that develop in animal models of ICH in these areas of the right hemisphere. Therefore, we evaluated the brain damage and neurobehavioral dysfunction associated with right hemispheric ICH in ventricle, cortex, hippocampus, and striatum. The ICH model was induced by autologous whole blood or collagenase VII-S (0.075 units in 0.5 µl saline) injection. At different time points after ICH induction, mice were assessed for brain tissue damage and neurobehavioral deficits. Sham control mice were used for comparison. We found that ICH location influenced features of brain damage, microglia/macrophage activation, and behavioral deficits. Furthermore, the 24-point neurologic deficit scoring system was most sensitive for evaluating locomotor abnormalities in all four models, especially on days 1, 3, and 7 post-ICH. The wire-hanging test was useful for evaluating locomotor abnormalities in models of striatal, intraventricular, and cortical ICH. The cylinder test identified locomotor abnormalities only in the striatal ICH model. The novel object recognition test was effective for evaluating recognition memory dysfunction in all models except for striatal ICH. The tail suspension test, forced swim test, and sucrose preference test were effective for evaluating emotional abnormality in all four models but did not correlate with severity of brain damage. These results will help to inform future preclinical studies of ICH outcomes.


Cellular and Molecular Biology | 2017

Hypoxia stimulates neural stem cell proliferation by increasing HIF‑1α expression and activating Wnt/β-catenin signaling.

Cunfang Qi; Jingwen Zhang; Xinlin Chen; Jieru Wan; Jun Wang; Pei Zhang; Liu Y

Evidence indicates that after brain injury, neurogenesis is enhanced in regions such as hippocampus, striatum, and cortex. To study the role of hypoxia-inducible factor-1 (HIF‑1α) and Wnt signaling in cerebral ischemia/hypoxia-induced proliferation of neural stem cells (NSCs), we investigated the proliferation of NSCs, expression of HIF‑1α, and activation of Wnt signaling under conditions of pathologic hypoxia in vitro. NSCs were isolated from 30-day-old Sprague-Dawley rats and subjected to 0.3% oxygen in a microaerophilic incubation system. Cell proliferation was evaluated by measuring the diameter of neurospheres and by bromodeoxyuridine incorporation assays. Real-time quantitative PCR and Western blotting were used to detect mRNA and protein levels of HIF-1α, β-catenin, and cyclin D1 in the NSCs. The results showed that hypoxia increased NSC proliferation and the levels of HIF-1α, β‑catenin, and cyclin D1 (p < 0.05). Blockade of the Wnt signaling pathway decreased hypoxia-induced NSC proliferation, whereas activation of this pathway increased hypoxia-induced NSC proliferation (p < 0.05). Knockdown of HIF-1α with HIF-1α siRNA decreased β‑catenin nuclear translocation and cyclin D1 expression, and inhibited proliferation of NSCs (p < 0.05). These findings indicate that pathologic hypoxia stimulates NSC proliferation by increasing expression of HIF-1α and activating the Wnt/β-catenin signaling pathway. The data suggest that Wnt/β-catenin signaling may play a key role in NSC proliferation under conditions of pathologic hypoxia.

Collaboration


Dive into the Jieru Wan's collaboration.

Top Co-Authors

Avatar

Jian Wang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Qian Li

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xiaoning Han

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xi Lan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xi Lan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chao Jiang

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhongyu Wang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Hong Lu

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar

Qing-Wu Yang

Third Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge