Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiguo Qiu is active.

Publication


Featured researches published by Jiguo Qiu.


Applied and Environmental Microbiology | 2016

A Tetrahydrofolate-Dependent Methyltransferase Catalyzing the Demethylation of Dicamba in Sphingomonas sp. Strain Ndbn-20

Li Yao; Lin-Lu Yu; Junjie Zhang; Xiang-Ting Xie; Qing Tao; Xin Yan; Qing Hong; Jiguo Qiu; Jian He; De-Rong Ding

ABSTRACT Sphingomonas sp. strain Ndbn-20 degrades and utilizes the herbicide dicamba as its sole carbon and energy source. In the present study, a tetrahydrofolate (THF)-dependent dicamba methyltransferase gene, dmt, was cloned from the strain, and three other genes, metF, dhc, and purU, which are involved in THF metabolism, were found to be located downstream of dmt. A transcriptional study revealed that the four genes constituted one transcriptional unit that was constitutively transcribed. Lysates of cells grown with glucose or dicamba exhibited almost the same activities, which further suggested that the dmt gene is constitutively expressed in the strain. Dmt shared 46% and 45% identities with the methyltransferases DesA and LigM from Sphingomonas paucimobilis SYK-6, respectively. The purified Dmt catalyzed the transfer of methyl from dicamba to THF to form the herbicidally inactive metabolite 3,6-dichlorosalicylic acid (DCSA) and 5-methyl-THF. The activity of Dmt was inhibited by 5-methyl-THF but not by DCSA. The introduction of a codon-optimized dmt gene into Arabidopsis thaliana enhanced resistance against dicamba. In conclusion, this study identified a THF-dependent dicamba methyltransferase, Dmt, with potential applications for the genetic engineering of dicamba-resistant crops. IMPORTANCE Dicamba is a very important herbicide that is widely used to control more than 200 types of broadleaf weeds and is a suitable target herbicide for the engineering of herbicide-resistant transgenic crops. A study of the mechanism of dicamba metabolism by soil microorganisms will benefit studies of its dissipation, transformation, and migration in the environment. This study identified a THF-dependent methyltransferase, Dmt, capable of catalyzing dicamba demethylation in Sphingomonas sp. Ndbn-20, and a preliminary study of its enzymatic characteristics was performed. Introduction of a codon-optimized dmt gene into Arabidopsis thaliana enhanced resistance against dicamba, suggesting that the dmt gene has potential applications for the genetic engineering of herbicide-resistant crops.


Applied and Environmental Microbiology | 2017

A Novel Aerobic Degradation Pathway of Thiobencarb is Initiated by a Two-Component FMN-Dependent Monooxygenase System TmoAB in Acidovorax sp. T1

Cui-Wei Chu; Bin Liu; Na Li; Shi-Gang Yao; Dan Cheng; Jia-Dong Zhao; Jiguo Qiu; Xin Yan; Qin He; Jian He

ABSTRACT Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C—S bond, generating diethylcarbamothioic S-acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum, alkanesulfonate monooxygenase from Pseudomonas savastanoi, and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C—S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC, was located 7,129 bp downstream of tmoAB, and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD+ as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis. IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil. In previous studies, thiobencarb was degraded initially via N-deethylation, sulfoxidation, hydroxylation, and dechlorination. However, enzymes and genes involved in the microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in Acidovorax sp. strain T1 and identified a novel two-component FMN-dependent monooxygenase system, TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C—S bond, producing diethylcarbamothioic S-acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical, and genetic foundation of thiobencarb degradation in this microorganism.


Current Microbiology | 2017

Biodegradation of Picolinic Acid by a Newly Isolated Bacterium Alcaligenes faecalis Strain JQ135

Jiguo Qiu; Junjie Zhang; Yanting Zhang; Yuhong Wang; Lu Tong; Qing Hong; Jian He

We isolated a bacterial strain JQ135 from municipal wastewater, which was capable of efficiently degrading picolinic acid (PA). Based on the physico-biochemical characteristics and 16S rDNA analysis, strain JQ135 was identified as Alcaligenes faecalis. In addition, strain JQ135 produced an orange pigment when cultured in the Luria-Bertani medium, which is different from the previously reported strains of A. faecalis. During the degradation of PA by the resting strain JQ135 cells, only one intermediate, 6-hydroxypicolinic acid (6HPA), was detected by ultraviolet spectrophotometry, high-pressure liquid chromatography, and liquid chromatography–mass spectrometry. A random transposon mutagenesis library of strain JQ135 was constructed. One mutant, Mut-G31, could convert PA into 6HPA without further degradation. The disrupted gene (orf2) was amplified from Mut-G31, and its product showed 32% identity to the 3-deoxy-d-manno-octulosonic acid kinase (KdkA) from Haemophilus influenzae. Results from complementation analysis confirmed that GTG was the initiation codon of the kdkA-like orf2, and that it was essential for PA biodegradation by strain JQ135. This study provides the first genetic evidence for the bacterial degradation of PA.


Letters in Applied Microbiology | 2018

Identification and characterization of a new three-component nicotinic acid hydroxylase NahAB1B2 from Pusillimonas sp. strain T2

M. Yuan; Yingkun Zhang; Lingling Zhao; Yun Ma; Qin He; Jian He; Jiguo Qiu

Nicotinic acid (NA) is ubiquitous in nature and its microbial degradation mechanisms are diverse. In this study, Pusillimonas sp. strain T2 was found to be capable of utilizing NA as sole carbon and nitrogen sources. This strain could completely degrade 300 mg l−1 NA within 3·5 h at 30°C and pH 7·0 and one of the degradation intermediate of NA was identified as 6‐hydroxynicotinic acid (6HNA). The draft genome sequences of strain T2 were determined to have a total length of 3·3 M bp and 3054 proteins were predicted. The encoding genes of three‐component NA hydroxylase (NahAB1B2) genes were identified. The nahAB1B2 genes were heterologously expressed in the non‐NA‐degrading Shinella sp. strain HZN7. The recombinant HZN7‐pBBR‐nahAB1B2 converted NA into equimolar 6HNA, while the recombinants HZN7‐pBBR‐nahAB1 (lacking component B2) and HZN7‐pBBR‐nahAB2 (lacking component B1) could not convert NA. Cell‐free extracts of HZN7‐pBBR‐nahAB1B2 exhibited NA hydroxylase activity. After addition of an artificial electron acceptor (such as phenazine methosulphate, PMS), the NA hydroxylase activity was significantly increased. The Km and Vmax values for NA were 65·94 μmol l−1 and 260·80 ± 5·69 mU mg−1, respectively, using PMS as an electron acceptor. This study provides a novel insight into the NA degradation by bacteria.


Journal of Hazardous Materials | 2018

Isolation and characterization of the cotinine-degrading bacterium Nocardioides sp. Strain JQ2195

Jiguo Qiu; Yanting Zhang; Lingling Zhao; Qin He; Jiandong Jiang; Qing Hong; Jian He

Cotinine, the primary nicotine metabolite, not only more stable and more difficult to degrade in the environment but is a potential health risk to human. To date, little is known about the biodegradation process of cotinine. In this study, a bacterial strain JQ2195 was isolated from municipal wastewater and was identified as Nocardioides sp. based on morphological, physiological characteristics, and 16 S rRNA gene phylogenetic analysis. This strain utilized cotinine as a sole carbon source and degraded 0.5 g L-1 cotinine completely within 32 h. Optimum degradation of cotinine by JQ2195 was at 30 °C and pH 7.0. Two cotinine degradation intermediates were identified as 6-hydroxy-cotinine and 6-hydroxy-3-succinoylpyridine by UV/VIS spectroscopy and liquid chromatography coupled with time-of-flight mass spectrometry. In addition, about half of cotinine was transformed to 6-hydroxy-3-succinoylpyridine which was a value-added compound for biocatalysis. When 2,6-dichlorophenolindophenol was used as an electron acceptor, the cell-free extract containing the inducible cotinine dehydrogenase could convert cotinine into 6-hydroxy-cotinine with the activity 40 ± 6 mUnmg-1.


Journal of Hazardous Materials | 2018

Cloning and expression of the carbaryl hydrolase gene mcb A and the identification of a key amino acid necessary for carbaryl hydrolysis

Shijun Zhu; Jiguo Qiu; Hui Wang; Xiang Wang; Wen Jin; Yingkun Zhang; Chenfei Zhang; Gang Hu; Jian He; Qing Hong

Carbamate hydrolase is the initial and key enzyme for degradation of carbamate pesticides. In the present study, we report the isolation of a carbaryl-degrading strain Pseudomonas sp. XWY-1, the cloning of its carbaryl hydrolase gene (mcbA) and the characterization of McbA. Strain XWY-1 was able to utilize carbaryl as a sole carbon source and degrade it using 1-naphthol as an intermediate. Transposon mutagenesis identified a mutant of XWY-1M that was unable to hydrolyze carbaryl. The transposon-disrupted gene mcbA was cloned by self-formed adaptor PCR, then expressed in Escherichia coli BL21(DE3) and purified. McbA was able to hydrolyze carbamate pesticides including carbaryl, isoprocarb, fenobucarb, carbofuran efficiently, while it hydrolyzed aldicarb, and propoxur poorly. The optimal pH of McbA was 7.0 and the optimal temperature was 40°C. The apparent Km and kcat values of McbA for carbaryl were 77.67±12.31μM and 2.12±0.10s-1, respectively. Three amino acid residues (His467, His477 and His504) in the predicted polymerase/histidinol phosphatase-like domain were shown to be closely related to the activity of McbA, with His504 being the most important, as a replacement of His504 led to the complete loss of activity. This is the first study to identify key amino acids in McbA.


International Journal of Systematic and Evolutionary Microbiology | 2018

Paenibacillus shunpengii sp. nov., isolated from farmland soil

Youjian Yang; Yanting Zhang; Guo-Qiang Chen; Dan Cheng; Jiguo Qiu; Qin He; Jian He

A bacterial strain designated YYJ7-1T was isolated from farmland soil in China and characterized using a polyphasic taxonomic approach. Cells of strain YYJ7-1T were Gram-staining-positive, aerobic or facultatively anaerobic, rod-shaped, motile and endospore-forming. Growth occurred at 18-42 °C (optimum at 35 °C), at pH 6.0-8.0 (optimum at pH 7.5) and with 0.0-4.0 % NaCl (optimum with 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Paenibacillus and showed high levels of sequence similarity with respect to Paenibacillus provencensis 4401170T (98.6 %) and Paenibacillus urinalis 5402403T (98.4 %), while lower 16S rRNA gene sequence similarities were observed with all other type strains (97.0 %). However, strain YYJ7-1T showed low DNA-DNA relatedness with P. provencensis 4401170T 48.7±4.5 % (43.6±7.1 % in a reciprocal experiment), and P. urinalis 5402403T 38.9±5.7 % (35.6±6.8 %). The major cellular fatty acids (>10.0 %) of strain YYJ7-1T were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The polar lipid profile consisted of phospholipids, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major isoprenoid quinone was MK-7. The DNA G+C content was 39.4 mol%. Based on these results, it is concluded that strain YYJ7-1T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus shunpengii sp. nov. is proposed, with YYJ7-1T (=ACCC 19965T=KCTC 33849T) as the type strain.


Current Microbiology | 2018

Complete Genome Sequence of Alcaligenes Faecalis Strain JQ135, a Bacterium Capable of Efficiently Degrading Nicotinic Acid

Yanting Zhang; Qing Chen; Junbin Ji; Lingling Zhao; Lei Zhang; Jiguo Qiu; Jian He

Nicotinic acid (NA), known as vitamin B3, is ubiquitous in nature and plays an important role in living organisms. The microbial catabolism of NA is highly diverse. However, the NA degradation by Alcaligenes faecalis strains has been poorly investigated. In this study, we report the complete genome sequence of A. faecalis JQ135 (4.08 Mbp) and several essential genes for NA degradation. This genome sequence will facilitate to elucidate the molecular metabolism of NA and advance the potential biotechnological applications of A. faecalis strains.


Applied and Environmental Microbiology | 2018

A Novel Degradation Mechanism for Pyridine Derivatives in Alcaligenes faecalis JQ135

Jiguo Qiu; Bin Liu; Lingling Zhao; Yanting Zhang; Dan Cheng; Xin Yan; Jiandong Jiang; Qing Hong; Jian He

Unlike the benzene ring, the uneven distribution of the electron density of the pyridine ring influences the positional reactivity and interaction with enzymes; e.g., the ortho and para oxidations are more difficult than the meta oxidations. Hydroxylation is an important oxidation process for the pyridine derivative metabolism. In previous reports, the ortho hydroxylations of pyridine derivatives were catalyzed by multicomponent molybdenum-containing monooxygenases, while the meta hydroxylations were catalyzed by monocomponent FAD-dependent monooxygenases. This study identified the new monocomponent FAD-dependent monooxygenase HpaM that catalyzed the ortho decarboxylative hydroxylation of 5HPA. In addition, we found that the maiA gene coding for maleic acid cis-trans isomerase was pivotal for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135. This study provides novel insights into the microbial metabolism of pyridine derivatives. ABSTRACT 5-Hydroxypicolinic acid (5HPA), a natural pyridine derivative, is microbially degraded in the environment. However, the physiological, biochemical, and genetic foundations of 5HPA metabolism remain unknown. In this study, an operon (hpa), responsible for 5HPA degradation, was cloned from Alcaligenes faecalis JQ135. HpaM was a monocomponent flavin adenine dinucleotide (FAD)-dependent monooxygenase and shared low identity (only 28 to 31%) with reported monooxygenases. HpaM catalyzed the ortho decarboxylative hydroxylation of 5HPA, generating 2,5-dihydroxypyridine (2,5DHP). The monooxygenase activity of HpaM was FAD and NADH dependent. The apparent Km values of HpaM for 5HPA and NADH were 45.4 μM and 37.8 μM, respectively. The genes hpaX, hpaD, and hpaF were found to encode 2,5DHP dioxygenase, N-formylmaleamic acid deformylase, and maleamate amidohydrolase, respectively; however, the three genes were not essential for 5HPA degradation in A. faecalis JQ135. Furthermore, the gene maiA, which encodes a maleic acid cis-trans isomerase, was essential for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135, indicating that it might be a key gene in the metabolism of pyridine derivatives. The genes and proteins identified in this study showed a novel degradation mechanism of pyridine derivatives. IMPORTANCE Unlike the benzene ring, the uneven distribution of the electron density of the pyridine ring influences the positional reactivity and interaction with enzymes; e.g., the ortho and para oxidations are more difficult than the meta oxidations. Hydroxylation is an important oxidation process for the pyridine derivative metabolism. In previous reports, the ortho hydroxylations of pyridine derivatives were catalyzed by multicomponent molybdenum-containing monooxygenases, while the meta hydroxylations were catalyzed by monocomponent FAD-dependent monooxygenases. This study identified the new monocomponent FAD-dependent monooxygenase HpaM that catalyzed the ortho decarboxylative hydroxylation of 5HPA. In addition, we found that the maiA gene coding for maleic acid cis-trans isomerase was pivotal for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135. This study provides novel insights into the microbial metabolism of pyridine derivatives.


Applied and Environmental Microbiology | 2018

Hydrolase CehA and Monooxygenase CfdC Are Responsible for Carbofuran Degradation in Sphingomonas sp. Strain CDS-1

Xin Yan; Wen Jin; Guang Wu; Wankui Jiang; Zhangong Yang; Junbin Ji; Jiguo Qiu; Jian He; Jiandong Jiang; Qing Hong

Due to the extensive use of carbofuran over the past 50 years, bacteria have evolved catabolic pathways to mineralize this insecticide, which plays an important role in eliminating carbofuran residue in the environment. This study revealed the genetic determinants of carbofuran degradation in Sphingomonas sp. strain CDS-1. We speculate that the close homologues cehA and cfdC are highly conserved among other carbofuran-degrading sphingomonads and play the same roles as those described here. These findings deepen our understanding of the microbial degradation mechanism of carbofuran and lay a foundation for the better use of microbes to remediate carbofuran contamination. ABSTRACT Carbofuran, a broad-spectrum systemic insecticide, has been extensively used for approximately 50 years. Diverse carbofuran-degrading bacteria have been described, among which sphingomonads have exhibited an extraordinary ability to catabolize carbofuran; other bacteria can only convert carbofuran to carbofuran phenol, while all carbofuran-degrading sphingomonads can degrade both carbofuran and carbofuran phenol. However, the genetic basis of carbofuran catabolism in sphingomonads has not been well elucidated. In this work, we sequenced the draft genome of Sphingomonas sp. strain CDS-1 that can transform both carbofuran and carbofuran phenol but fails to grow on them. On the basis of the hypothesis that the genes involved in carbofuran catabolism are highly conserved among carbofuran-degrading sphingomonads, two such genes, cehACDS-1 and cfdCCDS-1, were predicted from the 84 open reading frames (ORFs) that share ≥95% nucleic acid similarities between strain CDS-1 and another sphingomonad Novosphingobium sp. strain KN65.2 that is able to mineralize the benzene ring of carbofuran. The results of the gene knockout, genetic complementation, heterologous expression, and enzymatic experiments reveal that cehACDS-1 and cfdCCDS-1 are responsible for the conversion of carbofuran and carbofuran phenol, respectively, in strain CDS-1. CehACDS-1 hydrolyzes carbofuran to carbofuran phenol. CfdCCDS-1, a reduced flavin mononucleotide (FMNH2)- or reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenase, hydroxylates carbofuran phenol at the benzene ring in the presence of NADH, FMN/FAD, and the reductase CfdX. It is worth noting that we found that carbaryl hydrolase CehAAC100, which was previously demonstrated to have no activity toward carbofuran, can actually convert carbofuran to carbofuran phenol, albeit with very low activity. IMPORTANCE Due to the extensive use of carbofuran over the past 50 years, bacteria have evolved catabolic pathways to mineralize this insecticide, which plays an important role in eliminating carbofuran residue in the environment. This study revealed the genetic determinants of carbofuran degradation in Sphingomonas sp. strain CDS-1. We speculate that the close homologues cehA and cfdC are highly conserved among other carbofuran-degrading sphingomonads and play the same roles as those described here. These findings deepen our understanding of the microbial degradation mechanism of carbofuran and lay a foundation for the better use of microbes to remediate carbofuran contamination.

Collaboration


Dive into the Jiguo Qiu's collaboration.

Top Co-Authors

Avatar

Jian He

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xin Yan

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qing Hong

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jiandong Jiang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Na Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qin He

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dan Cheng

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qing Chen

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Li Yao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lingling Zhao

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge