Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiharu Hamako is active.

Publication


Featured researches published by Jiharu Hamako.


Glycoconjugate Journal | 1991

Structures of asparagine-linked oligosaccharides from hen egg-yolk antibody (IgY). Occurrence of unusual glucosylated oligo-mannose type oligosaccharides in a mature glycoprotein

Masaya Ohta; Jiharu Hamako; Satoru Yamamoto; Hajime Hatta; Mujo Kim; Takehiko Yamamoto; Satoru Oka; Tsuguo Mizuochi; Fumito Matsuura

Asparagine-linked oligosaccharides present on hen egg-yolk immunoglobulin, termed IgY, were liberated from the protein by hydrazinolysis. AfterN-acetylation, the oligosaccharides were labelled with a UV-absorbing compound,p-aminobenzoic acid ethyl ester (ABEE). The ABEE-derivatized oligosaccharides were fractionated by anion exchange, normal phase and reversed phase HPLC, and their structures were determined by a combination of sugar composition analysis, methylation analysis, negative ion FAB-MS, 500 MHz1H-NMR and sequential exoglycosidase digestions. IgY contained monoglucosylated oligomannose type oligosaccharides with structures of Glcα1-3Man7–9-GlcNAc-GlcNAc, oligomannose type oligosaccharides with the size range of Man5–9GlcNAc-GlcNAc, and biantennary complex type oligosaccharides with core region structure of Manα1-6(±GlcNAcβ1-4)(Manα1-3)Manβ1-4GlcNAcβ1-4(±Fucα1-6)GlcNAc. The glucosylated oligosaccharides, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, have not previously been reported in mature glycoproteins from any source.


Archives of Biochemistry and Biophysics | 1987

Structures of the sugar chains of mouse immunoglobulin G

Tsuguo Mizuochi; Jiharu Hamako; Koiti Titani

The asparagine-linked sugar chains of mouse immunoglobulin G (IgG) were quantitatively liberated as radioactive oligosaccharides from the polypeptide portions by hydrazinolysis followed by N-acetylation, and NaB3H4 reduction. After fractionation by paper electrophoresis, lectin (RCA120) affinity high-performance liquid chromatography, and gel filtration, their structures were studied by sequential exoglycosidase digestion in combination with methylation analysis. Mouse IgG was shown to contain the biantennary complex type sugar chains. Eight neutral oligosaccharide structures, viz, +/- Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(+/- Gal beta 1---- 4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAc, were found after the sialidase treatment. The molar ratio of the sugar chains with 2,1, and 0 galactose residues was 2:5:3. The galactose residue in the monogalactosylated sugar chains was distributed on Man alpha 1----3 and Man alpha 1----6 sides in the ratio of 1:3. The oligosaccharides were almost wholly fucosylated and contained no bisecting N-acetylglucosamine which is present in human, rabbit, and bovine IgGs.


Comparative Biochemistry and Physiology B | 2008

Isolation, purification, characterization and glycan-binding profile of a d-galactoside specific lectin from the marine sponge, Halichondria okadai

Sarkar M. A. Kawsar; Yuki Fujii; Ryo Matsumoto; Takayuki Ichikawa; Hiroaki Tateno; Jun Hirabayashi; Chikaku Dogasaki; Masahiro Hosono; Kazuo Nitta; Jiharu Hamako; Taei Matsui; Yasuhiro Ozeki

A lectin recognizing both Galbeta1-3GlcNAc and Galbeta1-4GlcNAc was purified from the demosponge Halichondria okadai by lactosyl-agarose affinity chromatography. The molecular mass of the lectin was determined to be 30 kDa by SDS-PAGE under reducing and non-reducing conditions and 60 kDa by gel permeation chromatography. The pI value of the lectin was 6.7. It was found to agglutinate trypsinized and glutaraldehyde-fixed rabbit and human erythrocytes in the presence and absence of divalent cations. The hemagglutinating activity by the lectin was inhibited by d-galactose, methyl-d-galactopyranoside, N-acetyl-d-galactosamine, methyl-N-acetyl-d-galactosaminide, lactose, melibiose, and asialofetuin. The K(d) of the lectin against p-nitrophenyl-beta-lactoside was determined to be 2.76x10(-5) M and its glycan-binding profile given by frontal affinity chromatography was shown to be similar to many other known galectins. Partial primary structure analysis of 7 peptides by cleavage with lysyl endopeptidase indicated that one of the peptides showed significant similarity with galectin purified from the sponge Geodia cydonium.


Journal of Biological Chemistry | 2012

A lectin from the mussel Mytilus galloprovincialis has a highly novel primary structure and induces glycan-mediated cytotoxicity of globotriaosylceramide-expressing lymphoma cells.

Yuki Fujii; Naoshi Dohmae; Koji Takio; Sarkar M. A. Kawsar; Ryo Matsumoto; Imtiaj Hasan; Yasuhiro Koide; Robert A. Kanaly; Yukiko Ogawa; Shigeki Sugawara; Masahiro Hosono; Kazuo Nitta; Jiharu Hamako; Taei Matsui; Yasuhiro Ozeki

Background: Studies on the diversity of carbohydrate-binding proteins (lectins) are important in glycobiology. Results: A lectin having a novel primary structure was isolated from a mussel and found to have a globotriose-dependent cytotoxicity on Burkitt lymphoma cells. Conclusion: A new primary structure quite distinct from known lectin is described. Significance: Discovery of similar lectin structures from vertebrates will lead to progress in medical sciences. A novel lectin structure was found for a 17-kDa α-d-galactose-binding lectin (termed “MytiLec”) isolated from the Mediterranean mussel, Mytilus galloprovincialis. The complete primary structure of the lectin was determined by Edman degradation and mass spectrometric analysis. MytiLec was found to consist of 149 amino acids with a total molecular mass of 16,812.59 Da by Fourier transform-ion cyclotron resonance mass spectrometry, in good agreement with the calculated value of 16,823.22 Da. MytiLec had an N terminus of acetylthreonine and a primary structure that was highly novel in comparison with those of all known lectins in the structure database. The polypeptide structure consisted of three tandem-repeat domains of ∼50 amino acids each having 45–52% homology with each other. Frontal affinity chromatography technology indicated that MytiLec bound specifically to globotriose (Gb3; Galα1–4Galβ1–4Glc), the epitope of globotriaosylceramide. MytiLec showed a dose-dependent cytotoxic effect on human Burkitt lymphoma Raji cells (which have high surface expression of Gb3) but had no such effect on erythroleukemia K562 cells (which do not express Gb3). The cytotoxic effect of MytiLec was specifically blocked by the co-presence of an α-galactoside. MytiLec treatment of Raji cells caused increased binding of anti-annexin V antibody and incorporation of propidium iodide, which are indicators of cell membrane inversion and perforation. MytiLec is the first reported lectin having a primary structure with the highly novel triple tandem-repeat domain and showing transduction of apoptotic signaling against Burkitt lymphoma cells by interaction with a glycosphingolipid-enriched microdomain containing Gb3.


Comparative Biochemistry and Physiology B | 1993

Comparative studies of asparagine-linked sugar chains of immunoglobulin G from eleven mammalian species

Jiharu Hamako; Taei Matsui; Yasuhiro Ozeki; Tsuguo Mizuochi; Koiti Titani

1. Asparagine-linked sugar chains released by hydrazinolysis from IgGs of porcine, equine, bovine, goat, ovine, canine, rabbit, guinea-pig and rat were comparatively analyzed by microsequencing and lectin affinity chromatography. 2. Sugar chains of all IgGs basically consisted of biantennary complex-type oligosaccharides containing 0-2 sialic acid residue(s). More than 70% of the oligosaccharides were neutral, except for guinea-pig IgG, and fucosylated trimannosyl core structures were dominant except for rabbit IgG. Bisecting N-acetylglucosamine residue was absent in porcine and equine IgGs. 3. A large quantity of galactose-less oligosaccharides were present in IgGs of porcine, equine, canine and rat.


Biochimica et Biophysica Acta | 2001

Comparative study of blood group-recognizing lectins toward ABO blood group antigens on neoglycoproteins, glycoproteins and complex-type oligosaccharides.

Taei Matsui; Jiharu Hamako; Yasuhiro Ozeki; Koiti Titani

Binding specificities of ABO blood group-recognizing lectins toward blood group antigens on neoglycoproteins, glycoproteins and complex-type oligosaccharides were studied by lectin-blotting analysis, enzyme linked immunosorbent assay and lectin-conjugated agarose column chromatography. Human serum albumin conjugated with A- and B-trisaccharides was clearly recognized by Helix pomatia (HPA), Phaseolus lunatus, Dolichos biflorus agglutinins, and Griffonia simplicifolia I agglutinin B(4), respectively. Almost the same results were obtained for human group A and B ovarian cyst and A-active hog gastric mucins, but Glycine max agglutinin only reacted to the group A hog mucin. When human plasma von Willebrand factor (vWF), having Asn-linked blood group antigens, was tested, HPA was highly sensitive to blood group A antigen on the vWF. Ulex europaeus agglutinin I (UEA-I) preferentially bound to the vWF from blood group O plasma. Within the GalNAc-recognizing lectins examined, a biantennary complex-type oligosaccharide having the blood group A structure retarded on an HPA-agarose column, and the affinity was diminished after digestion with alpha-N-acetylgalactosaminidase. This product bound to UEA-I agarose column. These results indicate that HPA and UEA-I are most sensitive for detection of glycoproteins possessing small amounts of blood group A and H antigens and also useful for fractionation of complex-type oligosaccharides with blood group A and H antigens, respectively.


Biochemistry | 2009

Purification and biochemical characterization of a D-galactose binding lectin from Japanese sea hare (Aplysia kurodai) eggs

Sarkar M. A. Kawsar; Ryo Matsumoto; Yuki Fujii; Chikaku Dogasaki; Masahiro Hosono; Kazuo Nitta; Jiharu Hamako; Taei Matsui; Noriaki Kojima; Yasuhiro Ozeki

A lectin was purified from Japanese sea hare Aplysia kurodai by lactosyl-agarose affinity chromatography. The molecular mass of the lectin was determined to be 56 and 32 kDa by SDS-PAGE under non-reducing and reducing conditions, respectively. It was found to agglutinate trypsinized and glutaraldehyde-fixed rabbit and human erythrocytes in the absence of divalent cations. The lectin exhibited stable thermo-tolerance as it retained hemagglutinating activity for 1 h even at 80°C and showed stability at pH 10. By contrast, it was very sensitive at pH less than 5 and in the presence of the sulfhydryl-group preserving reagent, β-mercaptoethanol. The hemagglutinating activity by the lectin was specifically inhibited by D-galactose, galacturonic acid, methyl-α- and methyl-β-D-galactopyranoside, lactose, melibiose, and asialofetuin. The association rate constant (kass) and dissociation rate constant (kdiss) were determined for the lectin to be 4.3·105 M−1·sec−1 and 2.2·10−3 sec−1, respectively, using a surface plasmon resonance biosensor. The lectin moderately inhibited cell proliferation in the P388 cell line dose dependently. Interestingly, lectin-treated cells did not show a fragmented DNA ladder as is caused by apoptosis, suggesting that the cell proliferation inhibition was caused by another unknown mechanism.


Marine Drugs | 2015

MytiLec, a Mussel R-Type Lectin, Interacts with Surface Glycan Gb3 on Burkitt's Lymphoma Cells to Trigger Apoptosis through Multiple Pathways

Imtiaj Hasan; Shigeki Sugawara; Yuki Fujii; Yasuhiro Koide; Daiki Terada; Naoya Iimura; Toshiyuki Fujiwara; Keisuke G. Takahashi; Nobuhiko Kojima; Sultana Rajia; Sarkar M. A. Kawsar; Robert A. Kanaly; Hideho Uchiyama; Masahiro Hosono; Yukiko Ogawa; Hideaki Fujita; Jiharu Hamako; Taei Matsui; Yasuhiro Ozeki

MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis); shows strong binding affinity to globotriose (Gb3: Galα1-4Galβ1-4Glc). MytiLec revealed β-trefoil folding as also found in the ricin B-subunit type (R-type) lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitts lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK) and stress-activated (p38 kinase and JNK) Mitogen-activated protein kinases (MAPK) pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF)-α (a ligand of death receptor-dependent apoptosis) and activation of mitochondria-controlling caspase-9 (initiator caspase) and caspase-3 (activator caspase). Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt’s lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation) based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface.


Toxins | 2012

Cytotoxicity and Glycan-Binding Properties of an 18 kDa Lectin Isolated from the Marine Sponge Halichondria okadai

Ryo Matsumoto; Yuki Fujii; Sarkar M. A. Kawsar; Robert A. Kanaly; Yasuhiro Koide; Imtiaj Hasan; Chihiro Iwahara; Yukiko Ogawa; Chang Hun Im; Shigeki Sugawara; Masahiro Hosono; Kazuo Nitta; Jiharu Hamako; Taei Matsui; Yasuhiro Ozeki

A divalent cation-independent lectin-HOL-18, with cytotoxic activity against leukemia cells, was purified from a demosponge, Halichondria okadai. HOL-18 is a 72 kDa tetrameric lectin that consists of four non-covalently bonded 18 kDa subunits. Hemagglutination activity of the lectin was strongly inhibited by chitotriose (GlcNAcβ1-4GlcNAcβ1-4GlcNAc), fetuin and mucins from porcine stomach and bovine submaxillary gland. Lectin activity was stable at pH 4-12 and temperatures lower than 60 °C. Frontal affinity chromatography with 16 types of pyridylaminated oligosaccharides indicated that the lectin had an affinity for N-linked complex-type and sphingolipid-type oligosaccharides with N-acetylated hexosamines and neuramic acid at the non-reducing termini. The lectin killed Jurkat leukemia T cells and K562 erythroleukemia cells in a dose- and carbohydrate-dependent manner.


Comparative Biochemistry and Physiology B | 2011

A D-galactose-binding lectin purified from coronate moon turban, Turbo (Lunella) coreensis, with a unique amino acid sequence and the ability to recognize lacto-series glycosphingolipids

Yuki Fujii; Sarkar M. A. Kawsar; Ryo Matsumoto; Naoto Ishizaki; Chikaku Dogasaki; Masahiro Hosono; Kazuo Nitta; Jiharu Hamako; Matsui Taei; Yasuhiro Ozeki

A divalent, cation-independent d-galactose-binding lectin was purified from coronate moon turban Turbo (Lunella) coreensis. This lectin recognizes d-galactose and is a 38-kDa dimeric protein consisting disulphide-bonded 22-kDa polypeptides under non-reducing and reducing conditions of sodium dodecyl sulphate-polyacrylamide gel electrophoresis, respectively. Haemagglutination activity was inhibited by D-galactose, N-acetyl D-galactosamine, melibiose, lactose, porcine stomach mucin, asialofetuin and bovine submaxillary mucin. The lectin has tolerance for pH 5-11 and temperature until 50°C for 1h. The lectin strongly aggregated Gram-negative bacteria, such as Vibrio parahaemolyticus and Salmonella O7, but weakly Gram-positive strain as Staphylococcus aureus and Bacillus subtilis. The glycan-binding profile of this lectin was evaluated using frontal affinity chromatography technology and the lectin appeared to recognize oligosaccharides such as lacto-series glycosphingolipids contained in blood type A and H substances in addition to complex-type N-linked glycoproteins. Partial primary structures of 139 amino acid residues of this lectin were determined from N-terminus polypeptides and 8 peptides derived by cleavage with lysyl-endopeptidase. The primary structure was slightly similar to other known sequences of lectin; however, a repeating motif has been included.

Collaboration


Dive into the Jiharu Hamako's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuhiro Ozeki

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Koiti Titani

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar

Yuki Fujii

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Masahiro Hosono

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yoshihiro Fujimura

Gulf Coast Regional Blood Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryo Matsumoto

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Kazuo Nitta

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge