Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jihong Wei is active.

Publication


Featured researches published by Jihong Wei.


Bulletin of Engineering Geology and the Environment | 2014

Effect of the combination characteristics of rock structural plane on the stability of a rock-mass slope

Shaorui Sun; Hongyi Sun; Yajie Wang; Jihong Wei; Jin Liu; Debi Prasanna Kanungo

The structural planes play an important role in rock mass slope stability. In this paper, a series of triaxial tests on the rock mass samples with different dip angles, plane numbers and plane spacing of structural surfaces were carried out to study the effect of the combination characteristics of the rock structural plane on rock mass mechanic parameters. Based on the test results and the combination characteristics of the field structural plane, the rock mechanics parameters for the spillway lock chamber slope of the Liyuan hydroelectric station were forecast. The stability of the slope was rationally evaluated based on the forecasted rock mass mechanical parameters. Finally, the safety factor was obtained based on the shear strength reduction method.


Polymers | 2018

Tensile Behavior of Polyurethane Organic Polymer and Polypropylene Fiber-Reinforced Sand

Jin Liu; Zhihao Chen; Zezhuo Song; Yuxia Bai; Wei Qian; Jihong Wei; Debi Kanungo

Physical and chemical reinforcements are commonly used to improve sand properties for engineering requirements. Many researchers have concluded that composite reinforcement can greatly improve sand property strength. In this paper, polyurethane organic polymer (PU) and polypropylene fiber (PF) were used to reinforce sand. It is found that composite reinforcement has great effects on tensile strength. A series of direct tensile tests were conducted to demonstrate this reinforcement and to investigate the effects of PF content, PU content, dry density, and curing time. Additionally, the reinforcement mechanism was analyzed by scanning electron microscope images. The tensile strength increases with curing time until it reaches a plateau. The composite reinforcement improves the tensile strength exponentially with the increase of PF and PU contents. For the effect due to dry density, the tensile strength first increased and then decreased with the peak at approximately 1.55 g/cm3. Through the interaction force among fibers and sand particles and the bonding force of polymer among sand particles, tensile strength of reinforced sand is greatly improved.


International Journal of Polymer Science | 2018

Experimental Study on Unconfined Compressive Strength of Organic Polymer Reinforced Sand

Jin Liu; Qiao Feng; Yong Wang; Da Zhang; Jihong Wei; Debi Prasanna Kanungo

The natural sand is loose in structure with a small cohesive force. Organic polymer can be used to reinforce this sand. To assess the effectiveness of organic polymer as soil stabilizer (PSS), a series of unconfined compressive strength tests have been performed on reinforced sand. The focus of this study was to determine a curing method and a mix design to stabilize sand. The curing time, PSS concentration, and sand density were considered as variables in this study. The reinforcement mechanism was analyzed with images of scanning electron microscope (SEM). The results indicated that the strength of stabilized sand increased with the increase in the curing time, concentration, and sand density. The strength plateaus are at about curing time of 48 h. The UCS of samples with density of 1.4 g/cm3 at 10%, 20%, 30%, 40%, and 50% PSS concentration are 62.34 kPa, 120.83 kPa, 169.22 kPa, 201.94 kPa, and 245.28 kPa, respectively. The UCS of samples with PSS concentration of 30% at 1.4 g/cm3, 1.5 g/cm3, and 1.6 g/cm3 density are 169.22 kPa, 238.6 kPa 5, and 281.69 kPa, respectively. The chemical reaction between PSS and sand particle is at its microlevel, which improves the sand strength by bonding its particles together and filling the pore spaces. In comparison with the traditional reinforcement methods, PSS has the advantages of time saving, lower cost, and better environment protection. The research results can be useful for practical engineering applications, especially for reinforcement of foundation, embankment, and landfill.


Advances in Materials Science and Engineering | 2017

The Effect of Polymer-Fiber Stabilization on the Unconfined Compressive Strength and Shear Strength of Sand

Jin Liu; Qiao Feng; Yong Wang; Yuxia Bai; Jihong Wei; Zezhuo Song

The mixed soil stabilizer of polyurethane organic polymer and polypropylene fiber was used to reinforce sand. The unconfined compressive test and direct shear test were carried out to evaluate the effects of polymer-fiber reinforced sand. The different contents of polymer and fiber were selected for the tests. The test results indicated that polymer-fiber mixture can improve strongly the strength of sand. The presence of polyurethane organic polymer enhances sand structural stability and the best composition of polymer and fiber was 4% and 0.2–0.3% of dry sand, respectively. Based on the test results and images of scanning electron microscope (SEM), the reinforcement mechanism was analyzed. The research results can be considered as the reference for sand reinforced engineering.


Advances in Civil Engineering | 2018

Experimental Study on 3D Roughness and Shear Failure Mechanism of Rock Mass Discontinuity

Jihong Wei; Yan Men; Shaorui Sun; Huilin Le; Feng Zhu

A set of systematic experimental methods, including 3D accuracy scanning and identification of discontinuous surface topography, physical model construction, and laboratory direct shear experiment under different directions and normal stresses, was proposed to research the influence of discontinuity roughness on strength and deformation of discontinuity. During physical model construction of discontinuity, three types of discontinuity and rough natural rock joint surface models were constructed and moulded. Meanwhile, many influence factors of discontinuity surface topography, such as asperity inclination angle (AIA), asperity height (AH), normal stress (NS), and shear direction (SD), were considered during the direct shear experiment. On the basis of the experimental results, it can be found that there were two types of failure modes under different loading conditions, which were named “failure by shearing through the asperities” and “failure by sliding over the asperities”. The obvious stress concentration phenomenon, climbing, and cutting effects appeared in the process of the direct shear experiment. In addition, the accurate identification of surface topography of natural rough rock joint surface was carried out using three-dimensional sensing system (3DSS) and self-programming software before and after the experiment. The subsamples with the same surface topography as the original samples were moulded using a self-developed instrument. Then, the mechanical behavior of the original samples and subsamples for the natural rough rock joint surface under different shear directions and normal stresses was studied. The results show that the shear displacement under different shear directions and normal stresses is very large before it reaches the failure state. And the residual strength of the original samples is higher than that of the subsamples. In addition, failure modes of the subsamples are main failure by shearing through the asperities due to the significant difference between peak shear strength and residual strength. The failure modes for parts of the original samples are failure by sliding over the asperities. The change ratio of area for the discontinuity after the experiment depends on surface topography, strength of heave on the surface of discontinuity, and particle size of minerals on the surface of discontinuity.


Journal of Sensors | 2017

Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation

Jin Liu; Yong Wang; Yi Lu; Jihong Wei; Debi Prasanna Kanungo

The monitoring of ground deformation is important for the prevention and control of geological disaster including land subsidence, ground fissure, surface collapse, and landslides. In this study, a distributed optical fiber sensing technique based on Brillouin Optical Time-Domain Analysis (BOTDA) was used to monitor the ground deformation. The principle behind the BOTDA is first introduced, and then laboratory calibration test and physical model test were carried out. Finally, BOTDA-based monitoring of ground fissure was carried out in a test site. Experimental results show that the distributed optical fiber can measure the soil strain during ground deformation process, and the strain curve responded to the soil compression and tension region clearly. During field test in Wuxi City, China, the ground fissures deformation area was monitored accurately and the trend of deformation can also be achieved to forecast and warn against the ground fissure hazards.


Advances in Mechanical Engineering | 2013

Case Study on Influence of Step Blast-Excavation on Support Systems of Existing Service Tunnel with Small Interval

Shaorui Sun; Ling Yue; Jimin Wu; Jin Liu; Jihong Wei

During the construction of newly built tunnel (NBT) adjacent to the existing service tunnel (EST), stability of the EST with small interval is affected by vibration waves which are caused by blasting load. The support structures of the EST will be cracked and damaged, while the unreasonable blast-excavation methods are adopted. Presently, the studies on behavior of support structure in the EST under blasting load are not totally clear, especially for the bolts system. Besides, the responses of support structure on blasting load are lacking comprehensive research. In this paper, New Zuofang tunnel is taken as a study case to study the influence of step blast-excavation in NBT on support structures of the EST through field experiment and numerical simulation. Some data, such as blasting vibration velocity (BVV) and frequency of support structures, are obtained through field measurement. Based on these data, the formula of BVVs is obtained. Research on stability of tunnel support structures affected by step blast-excavation is conducted using numerical simulation method. The dynamic-plastic constitutive model is adopted in the software ABAQUS to assess safety of support structures. The range and degree of damage for the support structures are obtained. In addition, change laws of axial force and stress with time for the bolts are analyzed.


Archive | 2008

Ground Settlement Model for Excavation of a Non-Partial Pressure and Shallow Buried Double-Arch Tunnel

Jihong Wei; Shaorui Sun

The ground settlement model due to tunnel’s excavation was summarized in this paper. Firstly, the geological characteristics of a double-arch tunnel in Jinliwen Expressway are investigated and analyzed, which mainly act as discontinuity. Especially, settlement pattern during excavation of such a double-arch tunnel with non-partial pressure and shallow bury was taken out by data analysis from those monitoring information. After ground settlement model and its increment model following the each step of tunnel’s excavation were built, the difference of forecasting between single tunnel and double-arch tunnel was shown. Secondly, the ground settlement model was testified by comparing between forecasting and field data. Thus, theoretical basic to avoid overmuch settlement during excavation of such a double-arch tunnel was provided.


Polymers | 2018

An Experimental Study on the Shear Behaviors of Polymer-Sand Composite Materials after Immersion

Jin Liu; Yuxia Bai; Ding Li; Qiongya Wang; Wei Qian; Ying Wang; Debi Kanungo; Jihong Wei

Sand mixed with geotextile/fiber/cement/lime or non-traditional chemical additives to form composite materials is recognized as an effective method for improving the sand properties. In this work, the variation in properties of composite materials after immersion is reported which has rarely appeared in the literature. The focus of this study is to evaluate the shear behaviors of polymer-sand composite material after immersion with direct shear tests. Several factors which may influence the shear behaviors after immersion are analyzed. The results demonstrate that this composite material still has good shear behaviors after immersion when compared to the purely sand material. The shear behaviors are improved with an increment in the curing time, polymer content and sand dry density while there is a decrease in the shear behaviors with increasing immersion time. The interaction between sand particles and the polymer are analyzed with Scanning Electron Microscope (SEM). The polymer membranes are formed by polymer enwrapping and connected sand particles to build an elastic and viscous structure in the sand that increases the interlocking forces between sand particles and decreases the void ratio of this material. The membranes are softened in water resulting in a decrease in the shear strength. Moreover, other factors affect the shear behaviors by improving the completeness and stability of this structure.


Polymers | 2018

Effect of Sisal Fiber and Polyurethane Admixture on the Strength and Mechanical Behavior of Sand

Jihong Wei; Fanxuan Kong; Jin Liu; Zhihao Chen; Debi Kanungo; Xiaowei Lan; Canhui Jiang; Xiao Shi

One major problem related to sandy soil is its low shear strength and cohesion in engineering. Although much effort has been made to strengthen sand mass with satisfactory performances, most undertakings lack environmental considerations. Thus, a combination of natural fiber and macromolecule polymer material attempts to achieve both strength and eco-friendliness. In the present investigation, sisal fiber (SF) and water-based polyurethane (PU) were used to reinforce sand. A series of unconfined compression tests were carried out on sand specimens at different percentages of fiber contents (0.2%, 0.4%, 0.6%, and 0.8% by weight of dry sand) and polymer contents (1%, 2%, 3%, and 4% by weight of dry sand). The results showed within our test range that the unconfined compressive strength (UCS) as well as post-peak strength of specimens increase with fiber and polymer contents. The inclusion of fiber and polymer significantly improve the ductility of specimens. The effect of dry densities on UCS were studied with three proportions. It is found that a high dry density led to an increase of UCS due to an effective contact area increase. The interactions were studied by observation through scanning electron microscopy (SEM) images. The presence of water-based polyurethane has the potential to improve the interparticle cohesion of sand due to its unique network membrane structure. The fiber reinforcement benefit depends strongly on the friction, interlocking force, and bond strength at the interface.

Collaboration


Dive into the Jihong Wei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debi Prasanna Kanungo

Central Building Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge