Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jihyae Ann is active.

Publication


Featured researches published by Jihyae Ann.


European Journal of Medicinal Chemistry | 2013

2-(3-Fluoro-4-methylsulfonylaminophenyl)propanamides as potent TRPV1 antagonists: structure activity relationships of the 2-oxy pyridine C-region.

Shivaji A. Thorat; Dong Wook Kang; HyungChul Ryu; Myeong Seop Kim; Ho Shin Kim; Jihyae Ann; Tae-Hwan Ha; Sung-Eun Kim; Karam Son; Sun Choi; Peter M. Blumberg; Robert Frank; Gregor Bahrenberg; Klaus Schiene; Thomas Christoph; Jeewoo Lee

The structure activity relationships of 2-oxy pyridine derivatives in the C-region of N-(6-trifluoromethyl-pyridin-3-ylmethyl) 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as hTRPV1 antagonists were investigated. The analysis indicated that the lipophilicity of the 2-oxy substituents was critical for potent antagonism and 4 or 5 carbons appeared to be optimal for activity. Multiple compounds proved to have comparable activity to 1, which had been reported as the most potent antagonist for capsaicin activity among the previous series of compounds. Further analysis of compounds 22 (2-isobutyloxy) and 53 (2-benzyloxy) in the formalin test in mice demonstrated strong analgesic activity with full efficacy. Docking analysis of 53S using our hTRPV1 homology model indicated that the A- and B-region 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamide made important hydrophobic and hydrogen bonding interactions with Tyr511 and that the C-region 6-trifluoromethyl and 2-benzyloxy groups of pyridine occupied the two hydrophobic binding pockets, respectively.


Bioorganic & Medicinal Chemistry Letters | 2014

2-Alkyl/alkenyl substituted pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as highly potent TRPV1 antagonists

HyungChul Ryu; Sejin Seo; Myeong Seop Kim; Mi-Yeon Kim; Ho Shin Kim; Jihyae Ann; Phuong-Thao Tran; Van-Hai Hoang; Jieun Byun; Minghua Cui; Karam Son; Pankaz Kumar Sharma; Sun Choi; Peter M. Blumberg; Robert Frank-Foltyn; Gregor Bahrenberg; Babette-Yvonne Koegel; Thomas Christoph; Sven Frormann; Jeewoo Lee

A series of 2-aryl pyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Multiple compounds showed highly potent TRPV1 antagonism toward capsaicin comparable to previous lead 7. Among them, compound 9 demonstrated anti-allodynia in a mouse neuropathic pain model and blocked capsaicin-induced hypothermia in a dose-dependent manner. Docking analysis of 9 with our hTRPV1 homology model provided insight into its specific binding mode.


Bioorganic & Medicinal Chemistry | 2013

TRPV1 antagonist with high analgesic efficacy: 2-Thio pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides

Tae-Hwan Ha; HyungChul Ryu; Sung-Eun Kim; Ho Shin Kim; Jihyae Ann; Phuong-Thao Tran; Van-Hai Hoang; Karam Son; Minghua Cui; Sun Choi; Peter M. Blumberg; Robert Frank; Gregor Bahrenberg; Klaus Schiene; Thomas Christoph; Sven Frormann; Jeewoo Lee

A series of 2-thio pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Among them, compound 24S showed stereospecific and excellent TRPV1 antagonism of capsaicin-induced activation. Further, it demonstrated strong anti-allodynic in a rat neuropathic pain model. Consistent with its action in vitro being through TRPV1, compound 24S blocked capsaicin-induced hypothermia in mice. Docking analysis of 24S with our hTRPV1 homology model was performed to identify its binding mode.


Bioorganic & Medicinal Chemistry | 2013

Structure-activity relationship of human glutaminyl cyclase inhibitors having an N-(5-methyl-1H-imidazol-1-yl)propyl thiourea template.

Phuong-Thao Tran; Van-Hai Hoang; Shivaji A. Thorat; Sung Eun Kim; Jihyae Ann; Yu Jin Chang; Dong Woo Nam; Hyundong Song; Inhee Mook-Jung; Jiyoun Lee; Jeewoo Lee

In an effort to design inhibitors of human glutaminyl cyclase (QC), we have synthesized a library of N-aryl N-(5-methyl-1H-imidazol-1-yl)propyl thioureas and investigated the contribution of the aryl region of these compounds to their structure-activity relationships as cyclase inhibitors. Our design was guided by the proposed binding mode of the preferred substrate for the cyclase. In this series, compound 52 was identified as the most potent QC inhibitor with an IC50 value of 58 nM, which was two-fold more potent than the previously reported lead 2. Compound 52 is a most promising candidate for future evaluation to monitor its ability to reduce the formation of pGlu-Aβ and Aβ plaques in cells and transgenic animals.


Bioorganic & Medicinal Chemistry Letters | 2015

α-Substituted 2-(3-fluoro-4-methylsulfonamidophenyl)acetamides as potent TRPV1 antagonists

Phuong-Thao Tran; Ho Shin Kim; Jihyae Ann; Sung-Eun Kim; Chang-Hoon Kim; Mannkyu Hong; Van-Hai Hoang; Van T.H. Ngo; Sunhye Hong; Minghua Cui; Sun Choi; Peter M. Blumberg; Robert Frank-Foltyn; Gregor Bahrenberg; Hannelore Stockhausen; Thomas Christoph; Jeewoo Lee

A series of α-substituted acetamide derivatives of previously reported 2-(3-fluoro-4-methylsulfonamidophenyl)propanamide leads (1, 2) were investigated for antagonism of hTRPV1 activation by capsaicin. Compound 34, which possesses an α-m-tolyl substituent, showed highly potent and selective antagonism of capsaicin with Ki(CAP)=0.1 nM. It thus reflected a 3-fold improvement in potency over parent 1. Docking analysis using our homology model indicated that the high potency of 34 might be attributed to a specific hydrophobic interaction of the m-tolyl group with the receptor.


Bioorganic & Medicinal Chemistry Letters | 2016

Discovery of N-(3-fluoro-4-methylsulfonamidomethylphenyl)urea as a potent TRPV1 antagonistic template.

Jihyae Ann; Wei Sun; Xing Zhou; Aeran Jung; Jisoo Baek; Sunho Lee; Chang-Hoon Kim; Suyoung Yoon; Sunhye Hong; Sun Choi; Noe A. Turcios; Brienna K.A. Herold; Timothy E. Esch; Nancy E. Lewin; Adelle Abramovitz; Larry V. Pearce; Peter M. Blumberg; Jeewoo Lee

A series of homologous analogues of prototype antagonist 1 and its urea surrogate were investigated as hTRPV1 ligands. Through one-carbon elongation in the respective pharmacophoric regions, N-(3-fluoro-4-methylsulfonamidomethylphenyl)urea was identified as a novel and potent TRPV1 antagonistic template. Its representative compound 27 showed a potency comparable to that of lead compound 1. Docking analysis of compound 27 in our hTRPV1 homology model indicated that its binding mode was similar with that of 1S.


Bioorganic & Medicinal Chemistry | 2016

2-Sulfonamidopyridine C-region analogs of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides as potent TRPV1 antagonists.

Jihyae Ann; Yooran Ki; Suyoung Yoon; Myeong Seop Kim; Jung-Un Lee; Chang-Hoon Kim; Sunho Lee; Aeran Jung; Jisoo Baek; Sunhye Hong; Sun Choi; Larry V. Pearce; Timothy E. Esch; Noe A. Turcios; Nancy E. Lewin; Adebowale E. Ogunjirin; Brienna K.A. Herold; Anna K. McCall; Peter M. Blumberg; Jeewoo Lee

A series of 2-sulfonamidopyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamide were investigated as hTRPV1 ligands. Systematic modification on the 2-sulfonamido group provided highly potent TRPV1 antagonists. The N-benzyl phenylsulfonamide derivatives 12 and 23 in particular showed higher affinities than that of lead compound 1. Compound 12 exhibited strong analgesic activity in the formalin pain model. Docking analysis of its chiral S-form 12S in our hTRPV1 homology model indicated that its high affinity might arise from additional hydrophobic interactions not present in lead compound 1S.


Journal of Medicinal Chemistry | 2017

Discovery of Potent Human Glutaminyl Cyclase Inhibitors as Anti-Alzheimer’s Agents Based on Rational Design

Van-Hai Hoang; Phuong-Thao Tran; Minghua Cui; Van T.H. Ngo; Jihyae Ann; Jongmi Park; Jiyoun Lee; Kwang-Hyun Choi; Hanyang Cho; Hee Kim; Hee-Jin Ha; Hyun-Seok Hong; Sun Choi; Young Ho Kim; Jeewoo Lee

Glutaminyl cyclase (QC) has been implicated in the formation of toxic amyloid plaques by generating the N-terminal pyroglutamate of β-amyloid peptides (pGlu-Aβ) and thus may participate in the pathogenesis of Alzheimers disease (AD). We designed a library of glutamyl cyclase (QC) inhibitors based on the proposed binding mode of the preferred substrate, Aβ3E-42. An in vitro structure-activity relationship study identified several excellent QC inhibitors demonstrating 5- to 40-fold increases in potency compared to a known QC inhibitor. When tested in mouse models of AD, compound 212 significantly reduced the brain concentrations of pyroform Aβ and total Aβ and restored cognitive functions. This potent Aβ-lowering effect was achieved by incorporating an additional binding region into our previously established pharmacophoric model, resulting in strong interactions with the carboxylate group of Glu327 in the QC binding site. Our study offers useful insights in designing novel QC inhibitors as a potential treatment option for AD.


Bioorganic & Medicinal Chemistry | 2015

Structure activity relationships of benzyl C-region analogs of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides as potent TRPV1 antagonists.

Jihyae Ann; Aeran Jung; Mi-Yeon Kim; Hyuk-Min Kim; HyungChul Ryu; Sunjoo Kim; Dong Wook Kang; Sunhye Hong; Minghua Cui; Sun Choi; Peter M. Blumberg; Robert Frank-Foltyn; Gregor Bahrenberg; Hannelore Stockhausen; Thomas Christoph; Jeewoo Lee

A series of 2-substituted 4-(trifluoromethyl)benzyl C-region analogs of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides were investigated for hTRPV1 antagonism. The analysis indicated that the phenyl C-region derivatives exhibited better antagonism than those of the corresponding pyridine surrogates for most of the series examined. Among the phenyl C-region derivatives, the two best compounds 43 and 44S antagonized capsaicin selectively relative to their antagonism of other activators and showed excellent potencies with K(i(CAP))=0.3 nM. These two compounds blocked capsaicin-induced hypothermia, consistent with TRPV1 as their site of action, and they demonstrated promising analgesic activities in a neuropathic pain model without hyperthermia. The docking study of 44S in our hTRPV1 homology model indicated that its binding mode was similar with that of its pyridine surrogate in the A- and B-regions but displayed a flipped configuration in the C-region.


European Journal of Medicinal Chemistry | 2015

Design and synthesis of protein kinase C epsilon selective diacylglycerol lactones (DAG-lactones)

Jihyae Ann; Suyoung Yoon; Jisoo Baek; Da Hye Kim; Nancy E. Lewin; Colin S. Hill; Peter M. Blumberg; Jeewoo Lee

DAG-lactones afford a synthetically accessible, high affinity platform for probing structure activity relationships at the C1 regulatory domain of protein kinase C (PKC). Given the central role of PKC isoforms in cellular signaling, along with their differential biological activities, a critical objective is the design of isoform selective ligands. Here, we report the synthesis of a series of DAG-lactones varying in their side chains, with a particular focus on linoleic acid derivatives. We evaluated their selectivity for PKC epsilon versus PKC alpha both under standard lipid conditions (100% phosphatidylserine, PS) as well as in the presence of a nuclear membrane mimetic lipid mixture (NML). We find that selectivity for PKC epsilon versus PKC alpha tended to be enhanced in the presence of the nuclear membrane mimetic lipid mixture and, for our lead compound, report a selectivity of 32-fold.

Collaboration


Dive into the Jihyae Ann's collaboration.

Top Co-Authors

Avatar

Jeewoo Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Peter M. Blumberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sun Choi

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiyoun Lee

Sungshin Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suyoung Yoon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunho Lee

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge