Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiji Jiang is active.

Publication


Featured researches published by Jiji Jiang.


Biology of Reproduction | 2010

Isolation, Characterization, and Culture of Human Spermatogonia

Zuping He; Maria Kokkinaki; Jiji Jiang; Ina Dobrinski; Martin Dym

Abstract This study was designed to isolate, characterize, and culture human spermatogonia. Using immunohistochemistry on tubule sections, we localized GPR125 to the plasma membrane of a subset of the spermatogonia. Immunohistochemistry also showed that MAGEA4 was expressed in all spermatogonia (Adark, Apale, and type B) and possibly preleptotene spermatocytes. Notably, KIT was expressed in late spermatocytes and round spermatids, but apparently not in human spermatogonia. UCHL1 was found in the cytoplasm of spermatogonia, whereas POU5F1 was not detected in any of the human germ cells. GFRA1 and ITGA6 were localized to the plasma membrane of the spermatogonia. Next, we isolated GPR125-positive spermatogonia from adult human testes using a two-step enzymatic digestion followed by magnetic-activated cell sorting. The isolated GPR125-positive cells coexpressed GPR125, ITGA6, THY1, and GFRA1, and they could be cultured for short periods of time and exhibited a marked increase in cell numbers as shown by a proliferation assay. Immunocytochemistry of putative stem cell genes after 2 wk in culture revealed that the cells were maintained in an undifferentiated state. MAPK1/3 phosphorylation was increased after 2 wk of culture of the GPR125-positive spermatogonia compared to the freshly isolated cells. Taken together, these results indicate that human spermatogonia share some but not all phenotypes with spermatogonial stem cells (SSCs) and progenitors from other species. GPR125-positive spermatogonia are phenotypically putative human SSCs and retain an undifferentiated status in vitro. This study provides novel insights into the molecular characteristics, isolation, and culture of human SSCs and/or progenitors and suggests that the MAPK1/3 pathway is involved in their proliferation.


Stem Cells and Development | 2009

Pluripotent Stem Cells Derived From Adult Human Testes

Nady Golestaneh; Maria Kokkinaki; Disha Pant; Jiji Jiang; David DeStefano; Carlos Fernandez-Bueno; Janice D. Rone; Bassem R. Haddad; G. Ian Gallicano; Martin Dym

Recent reports have demonstrated that adult tissue cells can be induced to pluripotency, the iPS cells, mostly with the addition of genes delivered using viruses. Also, several publications both in mouse and in human have demonstrated that spermatogonial stem cells (SSCs) from testes can convert back to embryonic stem (ES)-like cells without the addition of genes. Furthermore, these pluripotent ES-like cells can differentiate into all three germ layers and organ lineages. Thus, SSCs have great potential for cell-based, autologous organ regeneration therapy for various diseases. We obtained testes from organ donors and using 1 g pieces of tissue (biopsy size) we demonstrate that testis germ cells (putative SSCs and/or their progenitors) reprogram to pluripotency when removed from their stem cell niche and when appropriate growth factors and reagents in embryonic stem cell medium are added. In addition, our method of obtaining pluripotent ES-like cells from germ cells is simpler than the described methods and may be more suitable if this procedure is developed for the clinic to obtain pluripotent cells to cure disease.


Stem Cells | 2008

Gdnf Upregulates c‐Fos Transcription via the Ras/Erk1/2 Pathway to Promote Mouse Spermatogonial Stem Cell Proliferation

Zuping He; Jiji Jiang; Maria Kokkinaki; Nady Golestaneh; Marie Claude Hofmann; Martin Dym

Glial cell line‐derived neurotrophic factor (GDNF) plays a crucial role in regulating the proliferation of spermatogonial stem cells (SSC). The signaling pathways mediating the function of GDNF in SSC remain unclear. This study was designed to determine whether GDNF signals via the Ras/ERK1/2 pathway in the C18‐4 cells, a mouse SSC line. The identity of this cell line was confirmed by the expression of various markers for germ cells, proliferating spermatogonia, and SSC, including GCNA1, Vasa, Dazl, PCNA, Oct‐4, GFRα1, Ret, and Plzf. Western blot analysis revealed that GDNF activated Ret tyrosine phosphorylation. All 3 isoforms of Shc were phosphorylated upon GDNF stimulation, and GDNF induced the binding of the phosphorylated Ret to Shc and Grb2 as indicated by immunoprecipitation and Western blotting. The active Ras was induced by GDNF, which further activated ERK1/2 phosphorylation. GDNF stimulated the phosphorylation of CREB‐1, ATF‐1, and CREM‐1, and c‐fos transcription. Notably, the increase in ERK1/2 phosphorylation, c‐fos transcription, bromodeoxyuridine incorporation, and metaphase counts induced by GDNF, was completely blocked by pretreatment with PD98059, a specific inhibitor for MEK1, the upstream regulator of ERK1/2. GDNF stimulation eventually upregulated cyclin A and CDK2 expression. Together, these data suggest that GDNF induces CREB/ATF‐1 family member phosphorylation and c‐fos transcription via the Ras/ERK1/2 pathway to promote the proliferation of SSC. Unveiling GDNF signaling cascades in SSC has important implications in providing attractive targets for male contraception as well as for the regulation of stem cell renewal vs. differentiation.


Biology of Reproduction | 2007

GFRA1 SILENCING IN MOUSE SPERMATOGONIAL STEM CELLS RESULTS IN THEIR DIFFERENTIATION VIA THE INACTIVATION OF RET TYROSINE KINASE

Zuping He; Jiji Jiang; Marie Claude Hofmann; Martin Dym

Abstract Spermatogenesis is the process by which spermatogonial stem cells divide and differentiate into sperm. The role of growth factor receptors in regulating self-renewal and differentiation of spermatogonial stem cells remains largely unclear. This study was designed to examine Gfra1 receptor expression in immature and adult mouse testes and determine the effects of Gfra1 knockdown on the proliferation and differentiation of type A spermatogonia. We demonstrated that GFRA1 was expressed in a subpopulation of spermatogonia in immature and adult mice. Neither Gfra1 mRNA nor GFRA1 protein was detected in pachytene spermatocytes and round spermatids. GFRA1 and POU5F1 (also known as OCT4), a marker for spermatogonial stem cells, were co-expressed in a subpopulation of type A spermatogonia from 6-day-old mice. In addition, the spermatogonia expressing GFRA1 exhibited a potential for proliferation and the ability to form colonies in culture, which is a characteristic of stem cells. RNA interference assays showed that Gfra1 small interfering RNAs (siRNAs) knocked down the expression of Gfra1 mRNA and GFRA1 protein in type A spermatogonia. Notably, the reduction of Gfra1 expression by Gfra1 siRNAs induced a phenotypic differentiation, as evidenced by the elevated expression of KIT, as well as the decreased expression of POU5F1 and proliferating cell nuclear antigen (PCNA). Furthermore, Gfra1 silencing resulted in a decrease in RET phosphorylation. Taken together, these data indicate that Gfra1 is expressed dominantly in mouse spermatogonial stem cells and that Gfra1 knockdown leads to their differentiation via the inactivation of RET tyrosine kinase, suggesting an essential role for Gfra1 in spermatogonial stem cell regulation.


Stem Cells | 2013

MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1.

Zuping He; Jiji Jiang; Maria Kokkinaki; Lin Tang; Wenxian Zeng; Ian Gallicano; Ina Dobrinski; Martin Dym

Studies on spermatogonial stem cells (SSCs) are of unusual significance because they are the unique stem cells that transmit genetic information to subsequent generations and they can acquire pluripotency to become embryonic stem‐like cells that have therapeutic applications in human diseases. MicroRNAs (miRNAs) have recently emerged as critical endogenous regulators in mammalian cells. However, the function and mechanisms of individual miRNAs in regulating SSC fate remain unknown. Here, we report for the first time that miRNA‐20 and miRNA‐106a are preferentially expressed in mouse SSCs. Functional assays in vitro and in vivo using miRNA mimics and inhibitors reveal that miRNA‐20 and miRNA‐106a are essential for renewal of SSCs. We further demonstrate that these two miRNAs promote renewal at the post‐transcriptional level via targeting STAT3 and Ccnd1 and that knockdown of STAT3, Fos, and Ccnd1 results in renewal of SSCs. This study thus provides novel insights into molecular mechanisms regulating renewal and differentiation of SSCs and may have important implications for regulating male reproduction. Stem Cells 2013;31:2205–2217


Stem Cells | 2009

Nodal Signaling via an Autocrine Pathway Promotes Proliferation of Mouse Spermatogonial Stem/Progenitor Cells Through Smad2/3 and Oct‐4 Activation

Zuping He; Jiji Jiang; Maria Kokkinaki; Martin Dym

Spermatogenesis is the process that involves the division and differentiation of spermatogonial stem cells into spermatozoa. However, the autocrine molecules and signaling pathways controlling their fate remain unknown. This study was designed to identify novel growth factors and signaling pathways that regulate proliferation, differentiation, and survival of spermatogonial stem/progenitor cells. To this end, we have for the first time explored the expression, function, and signaling pathway of Nodal, a member of the transforming growth factor‐β superfamily, in mouse spermatogonial stem/progenitor cells. We demonstrate that both Nodal and its receptors are present in these cells and in a spermatogonial stem/progenitor cell line (C18‐4 cells), whereas Nodal is undetected in Sertoli cells or differentiated germ cells, as assayed by reverse transcription‐polymerase chain reaction, Western blots, and immunocytochemistry. Nodal promotes proliferation of spermatogonial stem/progenitor cells and C18‐4 cells, whereas Nodal receptor inhibitor SB431542 blocks their propagation as shown by proliferation and bromodeoxyuridine incorporation assays. Nodal knockdown by RNA interference results in a marked increase of cell apoptosis and a reduction of cell division as indicated by terminal deoxynucleotidyl transferase dUTP nick‐end labeling and proliferation assays. Conversely, overexpression of Nodal leads to an increase of cell proliferation. Nodal activates Smad2/3 phosphorylation, Oct‐4 transcription, cyclin D1, and cyclin E expression, whereas SB431542 completely abolishes their increase. Together, Nodal was identified as the first autocrine signaling molecule that promotes proliferation of mouse spermatogonial stem/progenitor cells via Smad2/3 and Oct‐4 activation. This study thus provides novel and important insights into molecular mechanisms regulating proliferation and survival of spermatogonial stem/progenitor cells. STEM CELLS 2009;27:2580–2590


Biology of Reproduction | 2009

The Molecular Signature of Spermatogonial Stem/Progenitor Cells in the 6-Day-Old Mouse Testis

Maria Kokkinaki; Tin-Lap Lee; Zuping He; Jiji Jiang; Nady Golestaneh; Marie Claude Hofmann; Wai-Yee Chan; Martin Dym

Abstract To characterize the molecular phenotype of spermatogonial stem cells (SSCs), we examined genes that are differentially expressed in the stem/progenitor spermatogonia compared to nonstem spermatogonia. We isolated type A spermatogonia (stem and nonstem type A) from 6-day-old mice using sedimentation velocity at unit gravity and further selected the stem/progenitor cell subpopulation by magnetic activated cell sorting with an antibody to GDNF-receptor-alpha-1 (GFRA1). It has been previously shown that GFRA1 is expressed in SSCs and is required for their stemness. The purity of the isolated cells was approximately 95% to 99% as indicated by immunocytochemistry using anti-GFRA1. Comparison of GFRA1-positive and GFRA1-negative spermatogonia by microarray analysis revealed 99 known genes and 12 uncharacterized transcripts that are overexpressed in the former cell population with a ?>2-fold change. Interestingly, the highest level of overexpression was observed for Csf1r, encoding the receptor for macrophage colony-stimulating factor (M-CSF, official symbol CSF1), which has a well-established role in the regulation of myeloid progenitor cells. Analysis of our microarray data with a bioinformatics software program (Ingenuity Systems) revealed the potential role of various signaling pathways in stem/progenitor spermatogonia and suggested a common pathway for GFRA1 and CSF1R that may lead to their proliferation. Further investigation to test this hypothesis has shown that CSF1 promotes cell proliferation in primary cultures of the isolated type A spermatogonia and in the spermatogonial-derived stem cell line C18–4. Semiquantitative RT-PCR and immunohistochemistry confirmed the previously mentioned microarray data. Collectively, this study provides novel molecular signatures for stem/progenitor spermatogonia and demonstrates a role for CSF1/CSF1R signaling in regulating their proliferation.


Reproduction, Fertility and Development | 2009

Spermatogonial stem cells: unlimited potential

Martin Dym; Zuping He; Jiji Jiang; Pant D; Maria Kokkinaki

Recent reports have demonstrated that adult cells can be reprogrammed to pluripotency, but mostly with genes delivered using retroviruses. Some of the genes are cancer causing; thus, these adult-derived embryonic stem (ES)-like cells cannot be used for therapy to cure human diseases. Remarkably, it has also been demonstrated recently by several groups that, in mice, spermatogonial stem cells (SSCs) can be reprogrammed to ES-like cells without the necessity of exogenously added genes. SSCs constitute one of the most important stem cell systems in the body, not only because they produce spermatozoa that transmit genetic information from generation to generation, but also because of the recent studies showing their remarkable plasticity. Very little is known about SSCs in humans, except for the earlier work of Clermont and colleagues who demonstrated that there are A(dark) and A(pale) spermatogonia, with the A(dark) referred to as the reserve stem cells and the A(pale) being the renewing stem cells. We now demonstrate that G protein-coupled receptor 125 (GPR125) may be a marker for human SSCs. Putative human SSCs can also be reprogrammed to pluripotency. We were able to achieve this result without the addition of genes, suggesting that human SSCs have considerable potential for cell-based, autologous organ regeneration therapy for various diseases.


Reproduction | 2010

Age affects gene expression in mouse spermatogonial stem/progenitor cells

Maria Kokkinaki; Tin-Lap Lee; Zuping He; Jiji Jiang; Nady Golestaneh; Marie Claude Hofmann; Wai-Yee Chan; Martin Dym

Spermatogenesis in man starts with spermatogonial stem cells (SSCs), and leads to the production of sperm in approximately 64 days, common to old and young men. Sperm from elderly men are functional and able to fertilize eggs and produce offspring, even though daily sperm production is more than 50% lower and damage to sperm DNA is significantly higher in older men than in those who are younger. Our hypothesis is that the SSC/spermatogonial progenitors themselves age. To test this hypothesis, we studied the gene expression profile of mouse SSC/progenitor cells at several ages using microarrays. After sequential enzyme dispersion, we purified the SSC/progenitors with immunomagnetic cell sorting using an antibody to GFRA1, a known SSC/progenitor cell marker. RNA was isolated and used for the in vitro synthesis of amplified and labeled cRNAs that were hybridized to the Affymetrix mouse genome microarrays. The experiments were repeated twice with different cell preparations, and statistically significant results are presented. Quantitative RT-PCR analysis was used to confirm the microarray results. Comparison of four age groups (6 days, 21 days, 60 days, and 8 months old) showed a number of genes that were expressed specifically in the older mice. Two of them (i.e. Icam1 and Selp) have also been shown to mark aging hematopoietic stem cells. On the other hand, the expression levels of the genes encoding the SSC markers Gfra1 and Plzf did not seem to be significantly altered by age, indicating that age affects only certain SSC/progenitor properties.


Methods of Molecular Biology | 2012

Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting.

Zuping He; Maria Kokkinaki; Jiji Jiang; Wenxian Zeng; Ina Dobrinski; Martin Dym

Mammalian spermatogenesis is a process whereby male germ-line stem cells (spermatogonial stem cells) divide and differentiate into sperm. Although a great deal of progress has been made in the isolation and characterization of spermatogonial stem cells (SSCs) in rodents, little is known about human SSCs. We have recently isolated human G protein-coupled receptor 125 (GPR125)-positive spermatogonia and GDNF family receptor alpha 1 (GFRA1)-positive spermatogonia using a 2-step enzymatic digestion and magnetic-activated cell sorting (MACS) from adult human testes. Cell purities of isolated human GPR125- and GFRA1-positive spermatogonia after MACS are greater than 95%, and cell viability is over 96%. The isolated GPR125- and GFRA1-positive spermatogonia coexpress GPR125, integrin, alpha 6 (ITGA6), THY1 (also known as CD90), GFRA1, and ubiquitin carboxyl-terminal esterase L1 (UCHL1), markers for rodent or pig SSCs/progenitors, suggesting that GPR125- and GFRA1-positive spermatogonia are phenotypically the SSCs in human testis. Human GPR125-positive spermatogonia can be cultured for 2 weeks with a remarkable increase in cell number. Immunocytochemistry further reveals that GPR125-positive spermatogonia can be maintained in an undifferentiated state in vitro. Collectively, the methods using enzymatic digestion and MACS can efficiently isolate and purify SSCs from adult human testis with consistent and high quality. The ability of isolating and characterizing human SSCs could provide a population of stem cells with high purity for mechanistic studies on human SSC self-renewal and differentiation as well as potential applications of human SSCs in regenerative medicine.

Collaboration


Dive into the Jiji Jiang's collaboration.

Top Co-Authors

Avatar

Martin Dym

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Maria Kokkinaki

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zuping He

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zuping He

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tin-Lap Lee

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Wai-Yee Chan

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Wenxian Zeng

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lin Tang

University of Calgary

View shared research outputs
Researchain Logo
Decentralizing Knowledge