Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jilai Li is active.

Publication


Featured researches published by Jilai Li.


Journal of the American Chemical Society | 2016

Electronic Origins of the Variable Efficiency of Room-Temperature Methane Activation by Homo- and Heteronuclear Cluster Oxide Cations [XYO2]+ (X, Y = Al, Si, Mg): Competition between Proton-Coupled Electron Transfer and Hydrogen-Atom Transfer

Jilai Li; Shaodong Zhou; Jun Zhang; Maria Schlangen; Thomas Weiske; Dandamudi Usharani; Sason Shaik; Helmut Schwarz

The reactivity of the homo- and heteronuclear oxide clusters [XYO2](+) (X, Y = Al, Si, Mg) toward methane was studied using Fourier transform ion cyclotron resonance mass spectrometry, in conjunction with high-level quantum mechanical calculations. The most reactive cluster by both experiment and theory is [Al2O2](•+). In its favorable pathway, this cluster abstracts a hydrogen atom by means of proton-coupled electron transfer (PCET) instead of following the conventional hydrogen-atom transfer (HAT) route. This mechanistic choice originates in the strong Lewis acidity of the aluminum site of [Al2O2](•+), which cleaves the C-H bond heterolytically to form an Al-CH3 entity, while the proton is transferred to the bridging oxygen atom of the cluster ion. In addition, a comparison of the reactivity of heteronuclear and homonuclear oxide clusters [XYO2](+) (X, Y = Al, Si, Mg) reveals a striking doping effect by aluminum. Thus, the vacant s-p hybrid orbital on Al acts as an acceptor of the electron pair from methyl anion (CH3(-)) and is therefore eminently important for bringing about thermal methane activation by PCET. For the Al-doped cluster ions, the spin density at an oxygen atom, which is crucial for the HAT mechanism, acts here as a spectator during the course of the PCET mediated C-H bond cleavage. A diagnostic plot of the deformation energy vis-à-vis the barrier shows the different HAT/PCET reactivity map for the entire series. This is a strong connection to the recently discussed mechanism of oxidative coupling of methane on magnesium oxide surfaces proceeding through Grignard-type intermediates.


Journal of Physical Chemistry A | 2012

Mechanism Insights of Ethane C-H Bond Activations by Bare [Fe-III=O](+): Explicit Electronic Structure Analysis

Xiaoli Sun; Xu-Ri Huang; Jilai Li; Rui-Ping Huo; Chia-Chung Sun

Alkane C-H bond activation by various catalysts and enzymes has attracted considerable attention recently, but many issues are still unanswered. The conversion of ethane to ethanol and ethene by bare [Fe(III)═O](+) has been explored using density functional theory and coupled-cluster method comprehensively. Two possible reaction mechanisms are available for the entire reaction, the direct H-abstraction mechanism and the concerted mechanism. First, in the direct H-abstraction mechanism, a direct H-abstraction is encountered in the initial step, going through a collinear transition state C···H···O-Fe and then leading to the generation of an intermediate Fe-OH bound to the alkyl radical weakly. The final product of the direct H-abstraction mechanism is ethanol, which is produced by the hydroxyl group back transfer to the carbon radical. Second, in the concerted reaction mechanism, the H-abstraction process is characterized via overcoming four/five-centered transition states (6/4)TSH_c5 or (4)TSH_c4. The second step of the concerted mechanism can lead to either product ethanol or ethene. Moreover, the major product ethene can be obtained through two different pathways, the one-step pathway and the stepwise pathway. It is the first report that the former pathway starting from (6/4)IM_c to the product can be better described as a proton-coupled electron transfer (PCET). It plays an important role in the product ethene generation according to the CCSD(T) results. The spin-orbital coupling (SOC) calculations demonstrate that the title reaction should proceed via a two-state reactivity (TSR) pattern and that the spin-forbidden transition could slightly lower the rate-determining energy barrier height. This thorough theoretical study, especially the explicit electronic structure analysis, may provide important clues for understanding and studying the C-H bond activation promoted by iron-based artificial catalysts.


Journal of the American Chemical Society | 2016

Mechanistic Variants in Gas-Phase Metal-Oxide Mediated Activation of Methane at Ambient Conditions

Jilai Li; Shaodong Zhou; Jun Zhang; Maria Schlangen; Dandamudi Usharani; Sason Shaik; Helmut Schwarz

The C-H bond activation of methane mediated by a prototypical heteronuclear metal-oxide cluster, [Al2Mg2O5](•+), was investigated by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in conjunction with high-level quantum mechanical calculations. Experimentally, hydrogen-atom abstraction from methane by the cluster ion [Al2Mg2O5](•+) takes place at ambient conditions. As to the mechanism, according to our computational findings, both the proton-coupled electron transfer (PCET) and the conventional hydrogen-atom transfer (HAT) are feasible and compete with each other. This is in distinct contrast to the [XYO2](+) (X, Y = Mg, Al, Si) cluster oxide ions which activate methane exclusively via the PCET route (Li, J.; Zhou, S.; Zhang, J.; Schlangen, M.; Weiske, T.; Usharani, D.; Shaik, S.; Schwarz, H. J. Am. Chem. Soc. 2016, 138, 7973-7981). The electronic origins of the mechanistically rather complex reactivity scenarios of the [Al2Mg2O5](•+)/CH4 couple were elucidated. For the PCET mechanism, in which the Lewis acid-base pair [Al(+)-O(-)] of the cluster acts as the active site, a clear correlation has been established between the nature of the transition state, the corresponding barrier height, the Lewis acidity-basicity of the [M(+)-O(-)] unit, as well as the bond order of the M(+)-O(-) bond. Also addressed is the role of the spin and charge distributions of a terminal oxygen radical site in the direct HAT route. The knowledge of the factors that control the reactivity of PCET and HAT pathways not only deepens our mechanistic understanding of metal-oxide mediated C-H bond activation but may also provide guidance for the rational design of catalysts.


Journal of Chemical Theory and Computation | 2013

Large Density-Functional and Basis-Set Effects for the DMSO Reductase Catalyzed Oxo-Transfer Reaction.

Jilai Li; Ricardo A. Mata; Ulf Ryde

The oxygen-atom transfer reaction catalyzed by the mononuclear molybdenum enzyme dimethyl sulfoxide reductase (DMSOR) has attracted considerable attention through both experimental and theoretical studies. We show here that this reaction is more sensitive to details of quantum mechanical calculations than what has previously been appreciated. Basis sets of at least triple-ζ quality are needed to obtain qualitatively correct results. Dispersion has an appreciable effect on the reaction, in particular the binding of the substrate or the dissociation of the product (up to 34 kJ/mol). Polar and nonpolar solvation effects are also significant, especially if the enzyme can avoid cavitation effects by using a preformed active-site cavity. Relativistic effects are considerable (up to 22 kJ/mol), but they are reasonably well treated by a relativistic effective core potential. Various density-functional methods give widely different results for the activation and reaction energy (differences of over 100 kJ/mol), mainly reflecting the amount of exact exchange in the functional, owing to the oxidation of Mo from +IV to +VI. By calibration toward local CCSD(T0) calculations, we show that none of eight tested functionals (TPSS, BP86, BLYP, B97-D, TPSSH, B3LYP, PBE0, and BHLYP) give accurate energies for all states in the reaction. Instead, B3LYP gives the best activation barrier, whereas pure functionals give more accurate energies for the other states. Our best results indicate that the enzyme follows a two-step associative reaction mechanism with an overall activation enthalpy of 63 kJ/mol, which is in excellent agreement with the experimental results.


Journal of Physical Chemistry B | 2014

Large Equatorial Ligand Effects on C-H Bond Activation by Nonheme Iron(IV)-oxo Complexes

Xiaoli Sun; Cai-Yun Geng; Ruiping Huo; Ulf Ryde; Yuxiang Bu; Jilai Li

In this article, we present density functional theory (DFT) calculations on the iron(IV)-oxo catalyzed methane C-H activation reactions for complexes in which the Fe(IV)═O core is surrounded by five negatively charged ligands. We found that it follows a hybrid pathway that mixes features of the classical σ- and π-pathways in quintet surfaces. These calculations show that the Fe-O-H arrangement in this hybrid pathway is bent in sharp contrast to the collinear character as observed for the classical quintet σ-pathways before. The calculations have also shown that it is the equatorial ligands that play key roles in tuning the reactivity of Fe(IV)═O complexes. The strong π-donating equatorial ligands employed in the current study cause a weak π(FeO) bond and thereby shift the electronic accepting orbitals (EAO) from the vertically orientated O pz orbital to the horizontally orientated O px. In addition, all the equatorial ligands are small in size and would therefore be expected have small steric effects upon substrate horizontal approaching. Therefore, for the small and strong π-donating equatorial ligands, the collinear Fe-O-H arrangement is not the best choice for the quintet reactivity. This study adds new element to iron(IV)-oxo catalyzed C-H bond activation reactions.


Angewandte Chemie | 2015

On the Role of the Electronic Structure of the Heteronuclear Oxide Cluster [Ga2Mg2O5].+ in the Thermal Activation of Methane and Ethane: An Unusual Doping Effect

Jilai Li; Xiao‐Nan Wu; Maria Schlangen; Shaodong Zhou; Patricio González‐Navarrete; Shiya Tang; Helmut Schwarz

The reactivity of the heteronuclear oxide cluster [Ga2 Mg2 O5 ](.+) , bearing an unpaired electron at a bridging oxygen atom (Ob (.-) ), towards methane and ethane has been studied using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Hydrogen-atom transfer (HAT) from both methane and ethane to the cluster ion is identified experimentally. The reaction mechanisms of these reactions are elucidated by state-of-the-art quantum chemical calculations. The roles of spin density and charge distributions in HAT processes, as revealed by theory, not only deepen our mechanistic understanding of CH bond activation but also provide important guidance for the rational design of catalysts by pointing to the particular role of doping effects.


Journal of the American Chemical Society | 2017

Electrostatic and Charge-Induced Methane Activation by a Concerted Double C–H Bond Insertion

Caiyun Geng; Jilai Li; Thomas Weiske; Maria Schlangen; Sason Shaik; Helmut Schwarz

A mechanistically unique, simultaneous activation of two C-H bonds of methane has been identified during the course of its reaction with the cationic copper carbide, [Cu-C]+. Detailed high-level quantum chemical calculations support the experimental findings obtained in the highly diluted gas phase using FT-ICR mass spectrometry. The behavior of [Cu-C]+/CH4 contrasts that of [Au-C]+/CH4, for which a stepwise bond-activation scenario prevails. An explanation for the distinct mechanistic differences of the two coinage metal complexes is given. It is demonstrated that the coupling of [Cu-C]+ with methane to form ethylene and Cu+ is modeled very well by the reaction of a carbon atom with methane mediated by an oriented external electric field of a positive point charge.


Journal of Physical Chemistry A | 2014

Benchmark Study on Methanol C–H and O–H Bond Activation by Bare [FeIVO]2+

Xianhui Sun; Xiaoli Sun; Cai-Yun Geng; Haitao Zhao; Jilai Li

We present a high-level computational study on methanol C-H and O-H bond cleavages by bare [Fe(IV)O](2+), as well as benchmarks of various density functional theory (DFT) methods. We considered direct and concerted hydrogen transfer (DHT and CHT) pathways, respectively. The potential energy surfaces were constructed at the CCSD(T)/def2-TZVPP//B3LYP/def2-TZVP level of theory. Mechanistically, (1) the C-H bond cleavage is dominant and the O-H activation only plays minor role on the PESs; (2) the DHT from methyl should be the most practical channel; and (3) electronic structure analysis demonstrates the proton and electron transfer coupling behavior along the reaction coordinates. The solvent effect is evident and plays distinct roles in regulating the two bond activations in different mechanisms during the catalysis. The effect of optimizing the geometries using different density functionals was also studied, showing that it is not meaningful to discuss which DFT method could give the accurate prediction of the geometries, especially for transition structures. Furthermore, the gold-standard CCSD(T) method was used to benchmark 19 different density functionals with different Hartree-Fock exchange fractions. The results revealed that (i) the structural factor plays a minor role in the single point energy (SPE) calculations; (ii) reaction energy prediction is quite challenging for DFT methods; (iii) the mean absolute deviations (MADs) reflect the problematic description of the DFs when dealing with metal oxidation state change, giving a strong correlation on the HF exchange in the DFs. Knowledge from this study should be of great value for computational chemistry, especially for the de novo design of transition metal catalysts.


Angewandte Chemie | 2016

Spin‐Selective Thermal Activation of Methane by Closed‐Shell [TaO3]+

Shaodong Zhou; Jilai Li; Maria Schlangen; Helmut Schwarz

Thermal reactions of the closed-shell metal-oxide cluster [TaO3 ](+) with methane were investigated by using FTICR mass spectrometry complemented by high-level quantum chemical calculations. While the generation of methanol and formaldehyde is somewhat expected, [TaO3 ](+) remarkably also has the ability to abstract two hydrogen atoms from methane with the elimination of CH2 . Mechanistically, the generation of CH2 O and CH3 OH occurs on the singlet-ground-state surface, while for the liberation of (3) CH2 , a two-state reactivity scenario prevails.


Journal of Physical Chemistry B | 2015

Catalytic Cycle of Multicopper Oxidases Studied by Combined Quantum- and Molecular-Mechanical Free-Energy Perturbation Methods

Jilai Li; Maryam Farrokhnia; Lubomír Rulíšek; Ulf Ryde

We have used combined quantum mechanical and molecular mechanical free-energy perturbation methods in combination with explicit solvent simulations to study the reaction mechanism of the multicopper oxidases, in particular, the regeneration of the reduced state from the native intermediate. For 52 putative states of the trinuclear copper cluster, differing in the oxidation states of the copper ions and the protonation states of water- and O2-derived ligands, we have studied redox potentials, acidity constants, isomerization reactions, as well as water- and O2 binding reactions. Thereby, we can propose a full reaction mechanism of the multicopper oxidases with atomic detail. We also show that the two copper sites in the protein communicate so that redox potentials and acidity constants of one site are affected by up to 0.2 V or 3 pKa units by a change in the oxidation state of the other site.

Collaboration


Dive into the Jilai Li's collaboration.

Top Co-Authors

Avatar

Helmut Schwarz

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Maria Schlangen

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao‐Nan Wu

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Shiya Tang

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Thomas Weiske

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Sason Shaik

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyan Sun

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge