Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiliang Li is active.

Publication


Featured researches published by Jiliang Li.


Journal of Bone and Mineral Research | 2009

Teriparatide reduces bone microdamage accumulation in postmenopausal women previously treated with alendronate

Harald Dobnig; Jan J. Stepan; David B. Burr; Jiliang Li; Dana Michalska; Adrien Sipos; Helmut Petto; Astrid Fahrleitner-Pammer; Imre Pavo

Suppression of bone turnover by bisphosphonates is associated with increased bone microdamage accumulation in animal models. Our objective was to study the effects of teriparatide treatment on changes in microdamage accumulation at the iliac crest in previously treatment‐naïve patients or in those switched from alendronate to teriparatide. Sixty‐six postmenopausal women with osteoporosis (mean age, 68.0 yr; and mean BMD T‐score of −2.8 at lumbar spine and −1.7 at total hip; 62% with prevalent fractures) entered this prospective, nonrandomized study and started with 24‐mo 20 μg/d subcutaneous teriparatide treatment in monotherapy: 38 patients stopped previous alendronate treatment (10 mg/d or 70 mg/wk for a mean duration of 63.6 mo) and switched to teriparatide, whereas 28 were previously treatment naïve. Thirty‐one paired biopsies with two intact cortices were collected and analyzed for microstructure and microdamage accumulation at baseline and after 24 mo of teriparatide administration. After 24 mo of teriparatide treatment, crack density (Cr.Dn), crack surface density (Cr.S.Dn), and crack length (Cr.Le) were decreased in previously alendronate‐treated patients, whereas only Cr.Le was reduced in former treatment‐naïve patients. Patients with lower initial femoral neck BMD also showed a higher reduction of microdamage accumulation. Better bone microarchitecture correlated positively, whereas bone turnover markers and age did not correlate with reduced microdamage accumulation on teriparatide. In conclusion, teriparatide reduces microdamage accumulation in the iliac crest of patients previously treated with alendronate. There is insufficient evidence to suggest that age or bone turnover would be associated with this change.


Bone | 2010

Parathyroid hormone and bisphosphonate have opposite effects on stress fracture repair

Ashley V. Sloan; Joseph R. Martin; Shuo Li; Jiliang Li

This study was aimed to investigate the effects of Parathyroid hormone (PTH) and alendronate (ALN) on stress fracture repair. Stress fractures were induced in the ulnae of female adult rats. Animals were treated daily with vehicle, PTH (40 microg/kg) or alendronate (2 microg/kg), respectively. Bone mineral content (BMC) and bone mineral density (BMD) of bilateral ulnae were measured at two, four and eight weeks following induction of stress fracture. Histology at the ulna midshaft was undertaken at 2 and 4 weeks and mechanical testing was done at 8 weeks after stress fracture. PTH increased BMC significantly by 7% at 4 weeks and BMD and BMC significantly by 10% and 7% at 8 weeks compared to the control. Alendronate did not change BMD or BMC in comparison with the control. PTH significantly stimulated bone formation by 114% at 2 weeks, increased intracortical resorption area by 23% at 4 weeks, and enhanced the ultimate force of the affected ulnae by 15% at 8 weeks compared to the control. Alendronate significantly suppressed bone formation rate by 44% compared to the control at 4 weeks. These data indicate that PTH may accelerate intracortical bone remodeling induced by microdamage and alendronate may delay intracortical bone remodeling during stress fracture repair in rats. This study suggests that PTH may be used to facilitate stress fracture repair whereas bisphosphonates may delay tissue level repair of stress fractures.


Bone | 2014

Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment.

Yanfei L. Ma; Qing Q. Zeng; Alan Y. Chiang; David B. Burr; Jiliang Li; Harald Dobnig; Astrid Fahrleitner-Pammer; Dana Michalska; Fernando Marin; Imre Pavo; Jan J. Stepan

Cortical bone, the dominant component of the human skeleton by volume, plays a key role in protecting bones from fracture. We analyzed the cortical bone effects of teriparatide treatment in postmenopausal women with osteoporosis who had previously received long-term alendronate (ALN) therapy or were treatment naïve (TN). Tetracycline-labeled paired iliac crest biopsies obtained from 29 ALN-pretreated and 16 TN women were evaluated for dynamic histomorphometric parameters of bone formation at the periosteal, endocortical and intracortical bone compartments, before and after 24months of teriparatide treatment. At baseline, the frequency of specimens without any endocortical and periosteal tetracycline labeling, and the percentage of quiescent osteons, was higher in the ALN than the TN group. Endocortical and periosteal mineralizing surface (MS/BS%), periosteal bone formation rate (BFR/BS), mineral apposition rate (MAR) and the number of intracortical forming osteons were significantly lower in the ALN-pretreated patients than in the TN group. Following teriparatide treatment, the frequency of endocortical and periosteal unlabeled biopsies decreased; in the ALN-pretreated group the percentage of quiescent osteons decreased and, in contrast, forming and resorbing osteons were increased. Teriparatide treatment resulted in significant increases of MAR in the endocortical, and MS/BS% in the periosteal compartment in the ALN-pretreated group. Most indices of bone formation remained lower in the ALN-pretreated group compared with the TN group at study end. Endocortical wall width was increased in both ALN-pretreated and TN groups. Cortical porosity and cortical thickness were significantly increased in the ALN-pretreated group after teriparatide treatment. Our results suggest that 24months of teriparatide treatment increases cortical bone formation and cortical turnover in patients who were either TN or had previous ALN therapy.


Bone | 2011

Osteoblast/osteocyte-specific inactivation of Stat3 decreases load-driven bone formation and accumulates reactive oxygen species.

Hongkang Zhou; America B. Newnum; Joseph R. Martin; Ping Li; Mark T. Nelson; Akira Moh; Xin-Yuan Fu; Hiroki Yokota; Jiliang Li

Signal transducers and activators of transcription 3 (Stat3) is a transcription factor expressed in many cell types including osteoblasts, osteocytes, and osteoclasts. STAT3 mutations cause a rare human immunodeficiency disease that presents reduced bone mineral density and recurrent pathological fractures. To investigate the role of Stat3 in load-driven bone metabolism, two strains of osteoblast/osteocyte-selective Stat3 knockout (KO) mice were generated. Compared to age-matched littermate controls, this selective inactivation of Stat3 significantly lowered bone mineral density (7-12%, p<0.05) as well as ultimate force (21-34%, p<0.01). In ulna loading (2.50-2.75N with 120 cycles/day at 2Hz for 3 consecutive days), Stat3 KO mice were less responsive than littermate controls as indicated by reduction in relative mineralizing surface (rMS/BS, 47-59%, p<0.05) and relative bone formation rate (rBFR/BS, 64-75%, p<0.001). Furthermore, inactivation of Stat3 suppressed load-driven mitochondrial activity, which led to an elevated level of reactive oxygen species (ROS) in cultured primary osteoblasts. Taken together, the results support the notion that the loss-of-function mutation of Stat3 in osteoblasts and osteocytes diminishes load-driven bone formation and impairs the regulation of oxidative stress in mitochondria.


Connective Tissue Research | 2012

RhoA-Mediated Signaling in Mechanotransduction of Osteoblasts

Kazunori Hamamura; Gaurav Swarnkar; Nancy Tanjung; Eunhye Cho; Jiliang Li; Sungsoo Na; Hiroki Yokota

Osteoblasts play a pivotal role in load-driven bone formation by activating Wnt signaling through a signal from osteocytes as a mechanosensor. Osteoblasts are also sensitive to mechanical stimulation, but the role of RhoA, a small GTPase involved in the regulation of cytoskeleton adhesion complexes, in mechanotransduction of osteoblasts is not completely understood. Using MC3T3-E1 osteoblast-like cells under 1 hr flow treatment at 10 dyn/cm2, we examined a hypothesis that RhoA signaling mediates the cellular responses to flow-induced shear stress. To test the hypothesis, we conducted genome-wide pathway analysis and evaluated the role of RhoA in molecular signaling. Activity of RhoA was determined with a RhoA biosensor, which determined the activation state of RhoA based on a fluorescence resonance energy transfer between CFP and YFP fluorophores. A pathway analysis indicated that flow treatment activated phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling as well as a circadian regulatory pathway. Western blot analysis revealed that in response to flow treatment phosphorylation of Akt in PI3K signaling and phosphorylation of p38 and ERK1/2 in MAPK signaling were induced. FRET measurement showed that RhoA was activated by flow treatment, and an inhibitor to a Rho kinase significantly reduced flow-induced phosphorylation of p38, ERK1/2, and Akt as well as flow-driven elevation of the mRNA levels of osteopontin and cyclooxygenase-2. Collectively, the result demonstrates that in response to 1 hr flow treatment to MC3T3-E1 cells at 10 dyn/cm2, RhoA plays a critical role in activating PI3K and MAPK signaling as well as modulating the circadian regulatory pathway.


Bone | 2011

Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone

Matthew D. Landrigan; Jiliang Li; Travis Lee Turnbull; David B. Burr; Glen L. Niebur; Ryan K. Roeder

Conventional methods used to image and quantify microdamage accumulation in bone are limited to histological sections, which are inherently invasive, destructive, two-dimensional, and tedious. These limitations inhibit investigation of microdamage accumulation with respect to volumetric spatial variation in mechanical loading, bone mineral density, and microarchitecture. Therefore, the objective of this study was to investigate non-destructive, three-dimensional (3-D) detection of microdamage accumulation in human cortical bone using contrast-enhanced micro-computed tomography (micro-CT), and to validate micro-CT measurements against conventional histological methods. Unloaded controls and specimens loaded in cyclic uniaxial tension to a 5% and 10% reduction in secant modulus were labeled with a precipitated BaSO₄ stain for micro-CT and basic fuchsin for histomorphometry. Linear microcracks were similarly labeled by BaSO₄ and basic fuchsin as shown by backscattered electron microscopy and light microscopy, respectively. The higher X-ray attenuation of BaSO₄ relative to the bone extracellular matrix provided enhanced contrast for the detection of damage that was otherwise not able to be detected by micro-CT prior to staining. Therefore, contrast-enhanced micro-CT was able to nondestructively detect the presence, 3-D spatial location, and accumulation of fatigue microdamage in human cortical bone specimens in vitro. Microdamage accumulation was quantified on segmented micro-CT reconstructions as the ratio of BaSO₄ stain volume (SV) to total bone volume (BV). The amount of microdamage measured by both micro-CT (SV/BV) and histomorphometry (Cr.N, Cr.Dn, Cr.S.Dn) progressively increased from unloaded controls to specimens loaded to a 5% and 10% reduction in secant modulus (p < 0.001). Group means for micro-CT measurements of damage accumulation were strongly correlated to those using histomorphometry (p < 0.05), validating the new methods. Limitations of the new methods in the present study included that the precipitated BaSO₄ stain was non-specific and non-biocompatible, and that micro-CT measurements exhibited greater variability compared to conventional histology. Nonetheless, contrast-enhanced micro-CT enabled non-destructive imaging and 3-D spatial information, which are not possible using conventional histological methods.


Bone | 2015

Deletion of Nrf2 reduces skeletal mechanical properties and decreases load-driven bone formation

Yong-Xin Sun; Lei Li; Kylie A. Corry; Pei Zhang; Yang Yang; Evan Himes; Cecilia Nelson; Guoli Dai; Jiliang Li

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor expressed in many cell types, including osteoblasts, osteocytes, and osteoclasts. Nrf2 has been considered a master regulator of cytoprotective genes against oxidative and chemical insults. The lack of Nrf2 can induce pathologies in multiple organs. The aim of this study was to investigate the role of Nrf2 in load-driven bone metabolism using Nrf2 knockout (KO) mice. Compared to age-matched littermate wild-type controls, Nrf2 KO mice have significantly lowered femoral bone mineral density (-7%, p<0.05), bone formation rate (-40%, p<0.05), as well as ultimate force (-11%, p<0.01). The ulna loading experiment showed that Nrf2 KO mice were less responsive than littermate controls, as indicated by reduction in relative mineralizing surface (rMS/BS, -69%, p<0.01) and relative bone formation rate (rBFR/BS, -84%, p<0.01). Furthermore, deletion of Nrf2 suppressed the load-driven gene expression of antioxidant enzymes and Wnt5a in cultured primary osteoblasts. Taken together, the results suggest that the loss-of-function mutation of Nrf2 in bone impairs bone metabolism and diminishes load-driven bone formation.


Journal of Bone and Mineral Research | 2010

Dramatic increase in cortical thickness induced by femoral marrow ablation followed by a 3-month treatment with PTH in rats.

Qing Zhang; Jodi Carlson; Hua Zhu Ke; Jiliang Li; Michael Kim; Kieran C. Murphy; Nozer Mehta; James P. Gilligan; Agnès Vignery

We previously reported that following mechanical ablation of the marrow from the midshaft of rat femurs, there is a rapid and abundant but transient growth of bone, and this growth is enhanced and maintained over a 3‐week period by the bone anabolic hormone parathyroid hormone (PTH). Here, we asked whether further treatment with PTH or bisphosphonates can extend the half‐life of the new bone formed in lieu of marrow. We subjected the left femur of rats to mechanical marrow ablation and treated the animals 5 days a week with PTH for 3 weeks (or with vehicle as a control) to replace the marrow by bone. Some rats were euthanized and used as positive controls or treated with vehicle, PTH, or the bisphosphonate alendronate for a further 9 weeks. We subjected both femurs from each rat to soft X‐ray, peripheral quantitative computed tomography (pQCT), micro‐computed tomography (µCT), dynamic histomorphometry analysis, and biomechanical testing. We also determined the concentrations of serum osteocalcin to confirm the efficacy of PTH. Treatment with PTH for 3 months dramatically enhanced endosteal and periosteal bone formation, leading to a 30% increase in cortical thickness. In contrast, alendronate protected the bone that had formed in the femoral marrow cavity after marrow ablation and 3 weeks of treatment with PTH but failed to promote endosteal bone growth or to improve the biomechanical properties of ablated femurs. We further asked whether calcium‐phosphate cements could potentiate the formation of bone after marrow ablation. Marrow cavities from ablated femurs were filled with one of two calcium‐phosphate cements, and rats were treated with PTH or PBS for 84 days. Both cements helped to protect the new bone formed after ablation. To some extent, they promoted the formation of bone after ablation, even in the absence of any anabolic hormone. Our data therefore expand the role of PTH in bone engineering and open new avenues of investigation to the field of regenerative medicine and tissue engineering. Local bone marrow aspiration in conjunction with an anabolic agent, a bisphosphonate, or a calcium‐phosphate cement might provide a new platform for rapid preferential site‐directed bone growth in areas of high bone loss.


Cells | 2012

Additive Effects of Mechanical Marrow Ablation and PTH Treatment on de Novo Bone Formation in Mature Adult Rats.

Qing-qing Zhang; Christopher Miller; Jesse E. Bible; Jiliang Li; Xiaoqing Xu; Nozer Mehta; James P. Gilligan; Agnès Vignery; Jodi A Carlson Scholz

Mechanical ablation of bone marrow in young rats induces rapid but transient bone growth, which can be enhanced and maintained for three weeks by the administration of parathyroid hormone (PTH). Additionally, marrow ablation, followed by PTH treatment for three months leads to increased cortical thickness. In this study, we sought to determine whether PTH enhances bone formation after marrow ablation in aged rats. Aged rats underwent unilateral femoral marrow ablation and treatment with PTH or vehicle for four weeks. Both femurs from each rat were analyzed by X-ray and pQCT, then analyzed either by microCT, histology or biomechanical testing. Marrow ablation alone induced transient bone formation of low abundance that persisted over four weeks, while marrow ablation followed by PTH induced bone formation of high abundance that also persisted over four weeks. Our data confirms that the osteo-inducive effect of marrow ablation and the additive effect of marrow ablation, followed by PTH, occurs in aged rats. Our observations open new avenues of investigations in the field of tissue regeneration. Local marrow ablation, in conjunction with an anabolic agent, might provide a new platform for rapid site-directed bone growth in areas of high bone loss, such as in the hip and wrist, which are subject to fracture.


Orthopedic & Muscular System | 2016

Hydrogel-Based Local Release of Salubrinal Stimulates Healing of Mouse Tibia Fracture

Wen-Xiao Xu; Andy Chen; Yijia Zhang; Jiliang Li; Chien-Chi Lin; Jinglong Yan; Hiroki Yokota

Background: Salubrinal is a small synthetic agent that presents beneficial effects on skeletal diseases and tumor progression. It is reported to stimulate bone formation and suppress bone resorption. In this study, we examined whether salubrinal administration can stimulate the healing of bone fracture using a mouse model of closed tibia fracture. nMaterials and Methods: We administered salubrinal to mice in two different routes: one-time hydrogel injection with salubrinal-loaded Poly Lactic-Co-Glycolic Acid (PLGA) microparticles; and daily subcutaneous injection for 4 weeks. A subcutaneous injection of Bone Morphogenetic Protein 2 (BMP2) was used as a positive control. The measurement of Bone Mineral Density (BMD)/Bone Mineral Content (BMC), as well as micro-CT imaging and mechanical testing were utilized to evaluate the healing of the experimental fracture. nResults: It was shown that 4 weeks after the induction of tibia fracture no groups, including the BMP2 control group, elevated BMD or BMC. Hydrogel-based injection of salubrinal showed a higher stiffness than that of the vehicle control, as well as significant elevation of ultimate force. Although daily subcutaneous injection of BMP2 increased stiffness and ultimate force, daily injection of salubrinal did not show significant improvement of mechanical properties. Of note, the total salubrinal dose in the hydrogel group was approximately 18% of that in the subcutaneous group. nDiscussion: Improvement in mechanical properties by a hydrogel-based administration of salubrinal and not by a daily subcutaneous injection indicates dependence of salubrinal’s efficacy on its administration procedure. Salubrinal is capable of suppressing tumor growth, a clear advantage over a growth factor such as BMP2. For a future clinical trial, administration frequency and optimal dosage may need to be further analyzed.

Collaboration


Dive into the Jiliang Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nozer Mehta

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Harald Dobnig

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Jan J. Stepan

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge