Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill B. Lewis is active.

Publication


Featured researches published by Jill B. Lewis.


Clinical Oral Investigations | 1999

In vitro cytotoxicity of resin-containing restorative materials after aging in artificial saliva

John C. Wataha; F.A. Rueggeberg; Carol A. Lapp; Jill B. Lewis; Petra E. Lockwood; Janet W. Ergle; Donald Mettenburg

Abstract Studies have reported that dental resin-based materials release substances which have biological liabilities. However, some current methods for detecting these substances may not be adequate to detect biologically relevant concentrations. In the current study, we hypothesized that resin-based materials exhibit cytotoxic effects and alter cellular function in vitro when high-pressure liquid chromatography (HPLC-UV detection) cannot detect any release of substances. We further hypothesized that this release continues even after aging the samples in artificial saliva. Five types of composite or compomer materials (Z-100, Tetric Ceram, Dyract AP, Solitaire, and Clearfil AP-X) and one organically modified ceramic material (Definite) were tested after aging in artificial saliva for 0, 7, or 14 days. Cytotoxicity was assessed using direct contact with fibroblasts and measurement of succinic dehydrogenase activity after 48 h of exposure post aging. Release of substances from the materials was assessed using HPLC with UV detection. Altered cellular function was estimated by measuring proliferation of MCF-7 cells with sulforhodamine staining. HPLC showed that whereas initial release of substances was higher without aging, this release dropped significantly after 7 or 14 days of aging, and was equivalent to the Teflon controls after 14 days for four of the materials (Tetric Ceram, Definite, Solitaire, and Clearfil AP-X). Without aging in saliva, all materials had cytotoxicities >50% of the Teflon negative controls. After 14 days of aging, all materials except the Definite continued to show severe cytotoxicity. Only the Definite could be tested for its ability to alter cellular function because of the continuing toxicity of the other materials. This modified ceramic material caused a significant proliferative effect on the MCF-7 cells indicating that sufficient substances were released to alter cellular function. We concluded that all of these commercially available resin-based dental materials continue to release sufficient components to cause lethal effects or alter cellular function in vitro even after 2 weeks of aging in artificial saliva.


Journal of Biomedical Materials Research | 1999

Estrogenicity of bisphenol A and bisphenol A dimethacrylate in vitro

Tara E. Schafer; Carol A. Lapp; Carole Mc Knight Hanes; Jill B. Lewis; John C. Wataha; George S. Schuster

Although pit and fissure sealants have been utilized extensively in dentistry as a way of preventing occlusal caries, results described by Olea et al. (1996) raised concerns about the safety of sealants and other resin-based dental materials due to the reported presence of bisphenol A (BPA) and its dimethacrylate ester (BPA-DM). Although the release of these compounds from dental materials has not been substantiated by two subsequent studies, we believed it was important to confirm or refute the report that BPA and BPA-DM have estrogenic activity in vitro. We grew breast cancer cells (MCF-7, T-47D, ZR-75-1) known to proliferate under estrogenic stimulation in phenol red-free DMEM containing human serum and concentrations of BPA or BPA-DM ranging from 10(-8)M to 5 x 10(-6)M. After 1 week, plates were harvested for crystal violet or sulforhodamine-B assays, and the optical densities of groups of treated cells were compared with values from control cells. At concentrations at or above 10(-6)M, both BPA and BPA-DM significantly increased cell proliferation (p < 0.05), comparable to the increase seen with 10(-9)M of estrogen. Flow cytometric methods demonstrated that these mitogenic effects occurred within 24 h of exposure to estrogen, BPA, or BPA-DM. The increase in DNA synthesis was analogous to that seen with estrogen stimulation. Thus, we confirmed that BPA and BPA-DM cause cell proliferation at micromolar concentrations that exceed the effective concentrations of estrogen by 1 to 10,000-fold.


Journal of Prosthetic Dentistry | 2003

In vitro cytotoxicity of traditional versus contemporary dental ceramics

Regina L. W. Messer; Petra E. Lockwood; John C. Wataha; Jill B. Lewis; Samuel Norris; Serge Bouillaguet

STATEMENT OF PROBLEM The biocompatibility of new dental ceramics has not been assessed with the same scrutiny as has been applied to alloys and composites. Yet, the biocompatibility of ceramics is critical to the long-term success of dental prostheses because ceramics are in close contact with oral tissues for extended periods. MATERIAL AND METHODS Five dental ceramics (2 traditional feldspathic veneer porcelains [Vita Omega and Duceragold], 2 lithium disilicate pressable materials [Stylepress and Empress-2], and a pressable leucite-based material [Empress-1]) were tested for their ability to alter cellular mitochondrial dehydrogenase activity after fabrication using a tetrazolium assay, after aging for 2 weeks in a biologic solution and after post-aging polishing with either a fine diamond or diamond polishing paste. Cellular responses were compared with polytetrafluoroethylene controls (analysis of variance, Tukey pairwise post-hoc comparison, alpha=.05). RESULTS The feldspathic porcelains caused only mild (<25% of controls) mitochondrial suppression regardless of aging or polishing. The pressable leucite-based material initially caused a 5% stimulation (not significant) of mitochondrial activity, which decreased significantly (P<.05) by 30% with aging to levels comparable to the feldspathic porcelains, and did not change with polishing. Both lithium disilicate materials caused an initial suppression of mitochondrial activity that decreased significantly with aging, but Empress-2 was severely cytotoxic initially (<20% of controls, P<.01), and became more cytotoxic again after polishing. Stylepress was less cytotoxic initially (85% of controls, not significant) and did not become cytotoxic again after polishing. CONCLUSIONS Dental ceramics are not equivalent in their in vitro biologic effects, even within the same class of material, and biologic safety should not be assumed. Most ceramics caused only mild in vitro suppression of cell function to levels that would be acceptable on the basis of standards used to evaluate alloys and composites. However, 1 Li-disilicate material (Empress-2) exhibited cytotoxicity that would not be deemed biologically acceptable on the basis of prevailing empirical standards for dental alloys and composites.


Clinical Oral Investigations | 1999

Identification and characterization of estrogen-like components in commercial resin-based dental restorative materials.

Jill B. Lewis; F.A. Rueggeberg; Carol A. Lapp; Janet W. Ergle; George S. Schuster

Abstract Recently, resin-based dental restorative materials have been targeted as potential sources of xenoestrogens, specifically bisphenol A (BPA) and bisphenol A dimethacrylate (BAD), which could contribute to overall estrogen load and result in deleterious side effects. The present study used high-pressure liquid chromatography (HPLC) to analyze twenty-eight different commercially available dental resins for the presence of BPA and/or BAD. In addition, sublines of the MCF-7 human breast tumor cell line were cultured in the presence of eluates from eleven of the dental resins and assessed for proliferative responses using the sulforhodamine B assay. Only one resin, Delton II, had detectable levels of BPA or BAD that could be verified by Fourier transform infrared spectrometry. Likewise, eluates from Delton II were the only samples that elicited a significant proliferative response in two of the MCF-7 sublines tested. Therefore, we conclude that dental resins in general do not represent a significant source of BPA or BAD exposure.


Dental Materials | 2004

Biological effects of blue light from dental curing units

John C. Wataha; Petra E. Lockwood; Jill B. Lewis; Frederick A. Rueggeberg; Regina L. W. Messer

OBJECTIVES This study assessed the effects of three common dental photo-curing light sources (quartz-tungsten-halogen (QTH), plasma-arc (PAC), and laser) on the cellular function of fibroblasts in vitro. METHODS Mouse fibroblasts were exposed to light from dental photo-curing units for clinically relevant durations, with total energy exposures ranging from 1.3 to 60 J/cm(2). The temperature rise of the cell-culture medium was measured to assess any possible effect from temperature increases, and cellular function was assessed by succinic dehydrogenase (SDH) activity of mitochondria. To directly compare the three light sources, additional experiments were done using equivalent total energy exposures from each source by adjusting the exposure durations for each unit. RESULTS In experiments that used clinically relevant exposure durations for each light, exposures ranging from 5 J/cm(2) (laser) to 15 J/cm(2) (PAC, QTH) irreversibly suppressed SDH activity nearly 100% when compared to no-light controls up to 72 h post-exposure. For the PAC and QTH sources, exposures as low as 3.5 J/cm(2) also irreversibly suppressed SDH activity. When equivalent energies were used from each light source, exposures of 1 J/cm(2) did not suppress SDH activity for the QTH and laser sources, but significantly (50%) suppressed SDH for the PAC source, indicating a difference in the biological effects of the outputs of the different curing units. Equivalent energy exposure experiments also indicated a definite dependence of SDH activity on the total light energy of exposure. Temperature rises ranged from 2 to 9 degrees C, and elevated temperatures lasted for 60-300 s above the base temperature of 37 degrees C, but peak temperature and the duration of temperature elevation were not always related and depended on the light source used. SIGNIFICANCE Results from the current study indicate that these photo-curing sources pose some risk of disrupting cellular function in vivo. Further study is necessary in other cell types and under more clinically relevant conditions to estimate the in vivo risk of photo-curing to oral tissues.


Journal of Dental Research | 2004

Blue Light Differentially Modulates Cell Survival and Growth

John C. Wataha; Jill B. Lewis; Petra E. Lockwood; S. Hsu; R.L. Messer; Frederick A. Rueggeberg; Serge Bouillaguet

Previous studies have reported that blue light (400–500 nm) inhibits cell mitochondrial activity. We investigated the hypothesis that cells with high energy consumption are most susceptible to blue-light-induced mitochondrial inhibition. We estimated cell energy consumption by population doubling time, and cell survival and growth by succinate dehydrogenase (SDH) activity. Six cell types were exposed to 5 or 60 J/cm2 of blue light from quartz-tungsten-halogen (QTH), plasma-arc (PAC), or argon laser sources in monolayer culture. Post-light SDH activity correlated positively with population doubling time (R2 = 0.91 for PAC, 0.76 for QTH, 0.68 for laser); SDH activity increased for cell types with the longest doubling times and was suppressed for cell types with shorter doubling times. Thus, light-induced exposure differentially affects SDH activity, cell survival, and growth, depending on cell energy consumption. Blue light may be useful as a therapeutic modulator of cell growth and survival.


International Endodontic Journal | 2008

Cytotoxicity of endodontic materials over 6-weeks ex vivo.

Martha Goël Brackett; A. Marshall; Petra E. Lockwood; Jill B. Lewis; Regina L. W. Messer; Serge Bouillaguet; John C. Wataha

AIM To test the hypothesis that extending the time of a traditional ex vivo cytotoxicity test helps to identify trends in the behaviour of root core materials and sealers, which could ultimately aid in predicting their clinical safety and performance. METHODOLOGY Endodontic sealers and core specimens were initially tested in direct contact with L929 fibroblasts for 72 h. Cell response was estimated by measuring cellular succinate dehydrogenase activity relative to Teflon controls. Cytotoxicity (% of more active cells) was reassessed after 1, 3, 4 and 6 weeks, with the specimens stored in a physiologically balanced salt-solution between tests. RESULTS Distinct trends in cytotoxicity among both core materials and sealers were observed over the 6-week test. Four of the six sealers and two of the three core materials showed cell viabilities of <30% of Teflon after 6 weeks (>70% cytotoxicity). CONCLUSIONS The current results suggest that some endodontic materials have an elevated biological risk for extended intervals.


Journal of Biomedical Materials Research Part B | 2009

Corrosion of machined titanium dental implants under inflammatory conditions

Regina L. W. Messer; Gyula Tackas; John Mickalonis; Yolanda Brown; Jill B. Lewis; John C. Wataha

The effects of hyperglycemia, altered cell function, or inflammatory mediators on implant corrosion are not well studied; yet, these effects are critical to implant biocompatibility and osseointegration. Because implant placement is burgeoning, patients with medically compromising systemic conditions such as diabetes are increasingly receiving implants, and the role of other inflammatory diseases on implant corrosion also needs investigation. In the current study, the corrosion properties of commercially available, machined titanium implants were studied in blood, cultures of monocytic cells, and solutions containing elevated dextrose concentrations. Implant corrosion was estimated by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy (EIS) for 26 h. In selected samples, THP1 monocytic cells were activated for 2 h with Lipopolysaccharide prior to implant exposure, and IL-1beta secretion was measured to assess the affect of the implants on monocyte activation. Implants under conditions of inflammatory stress exhibited more negative E(corr) values, suggesting an increased potential for corrosion. Linear polarization measurements detected increased corrosion rates in the presence of elevated dextrose conditions over PBS conditions. EIS measurements suggested that implants underwent surface passivation reactions that may have limited corrosion over the short term of this test. This result was supported by cyclic polarization tests. IL-1beta secretion was not altered under conditions of corrosion or implant exposure. The results suggest that inflammatory stress and hyperglycemia may increase the corrosion of dental endosseous titanium-based implants, but that longer, more aggressive electrochemical conditions may be necessary to fully assess these effects.


Assay and Drug Development Technologies | 2003

A Mechanism-Based In Vitro Anticancer Drug Screening Approach for Phenolic Phytochemicals

Stephen Hsu; Fu Xin X. Yu; Qin Huang; Jill B. Lewis; Baldev B. Singh; Douglas Dickinson; James L. Borke; Mohamed Sharawy; John C. Wataha; Tetsuya Yamamoto; Tokio Osaki; George S. Schuster

Plant-derived phenolic compounds, including polyphenols (e.g., tannins), flavonoids, and phenolic acids, have been under investigation for their anticancer therapeutic and chemoprevention properties. Recently, certain mechanisms underlying the differential effects of green tea polyphenols (GTPPs) on tumor versus normal cells have been determined. These suggest that GTPPs may simultaneously activate multiple pathways. However, existing screening methods are insufficient for the identification of agents that possess both a cytotoxic effect on tumor cells and a protective effect on normal cells. The current study describes the establishment of an in vitro survival/apoptosis testing system based on detecting these mechanisms by a double-fluorescence method. This system is able to screen potential chemopreventive or therapeutic agents from (but not limited to) plant-derived compounds based on the pathways differentially activated by the agents. Tumor cell death and normal cell survival are detected simultaneously, in a device that co-cultures normal human cells adjacent to human tumor cells.


Journal of Biomedical Materials Research Part B | 2009

Ni(II) ions dysregulate cytokine secretion from human monocytes

Jill B. Lewis; Regina L. W. Messer; Leslie Pitts; Stephen Hsu; Jason M. Hansen; John C. Wataha

Nickel-containing alloys are used in dentistry because of their low cost, but poor corrosion behavior increases their risk of causing adverse biological responses. Intraorally, nickel-containing alloys accumulate bacterial plaque that triggers periodontal inflammation via toxins such as lipopolysaccharide (LPS). Recent evidence suggests that in monocytes, Ni(II) amplifies LPS-induced secretion of several cytokines that mediate periodontal destruction. Thus, we investigated the effects of Ni(II), with or without LPS, on the secretion of a broader array of cytokines from monocytes. We then measured monocytic expression of two proteins, Nrf2 and thioredoxin-1 (Trx1), that influence the regulation of cytokine secretion. Cytokine arrays were used to measure the effects of 0-50 microM Ni(II) on cytokine secretion from human THP1 monocytes, with or without LPS activation. Immunoblots were used to estimate Nrf2 and Trx1 levels. Our results indicate that both Ni(II) alone and Ni(II) with LPS have broad-based effects on cytokine secretion. Ni(II) increased Nrf2 levels by threefold, and LPS amplified the effects of Ni(II) by 10-fold. Trx1 levels did not change under any condition tested. Our results suggest that Ni(II)-induced changes in cytokine secretion by monocytes are diverse and may be influenced by Nrf2 but are not likely influenced by changes in whole-cell Trx1 levels.

Collaboration


Dive into the Jill B. Lewis's collaboration.

Top Co-Authors

Avatar

John C. Wataha

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra E. Lockwood

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Stephen Hsu

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baldev B. Singh

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol A. Lapp

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Douglas Dickinson

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge