Jill E. Kolesar
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jill E. Kolesar.
Nature Cell Biology | 2013
Karthik Mallilankaraman; César Cárdenas; Patrick J. Doonan; Harish C. Chandramoorthy; Krishna M. Irrinki; Tünde Golenár; György Csordás; Priyanka Madireddi; Jun Yang; Marioly Müller; Russell A. Miller; Jill E. Kolesar; Jordi Molgó; Brett A. Kaufman; György Hajnóczky; J. Kevin Foskett; Muniswamy Madesh
The mitochondrial calcium uniporter (MCU) mediates calcium uptake by mitochondria and thus regulates cellular bioenergetics, but how MCU activity is modulated is not fully understood. Madesh, Foskett and colleagues report that the integral mitochondrial membrane protein MCUR1 (mitochondrial calcium uniporter regulator 1) binds to the MCU and promotes MCU-dependent calcium uptake to control ATP production and autophagy.
Nature Genetics | 2009
Woranontee Weraarpachai; Hana Antonicka; Florin Sasarman; Jürgen Seeger; Bertold Schrank; Jill E. Kolesar; Hanns Lochmüller; Mario Chevrette; Brett A. Kaufman; Rita Horvath; Eric A. Shoubridge
Defects in mitochondrial translation are among the most common causes of mitochondrial disease, but the mechanisms that regulate mitochondrial translation remain largely unknown. In the yeast Saccharomyces cerevisiae, all mitochondrial mRNAs require specific translational activators, which recognize sequences in 5′ UTRs and mediate translation. As mammalian mitochondrial mRNAs do not have significant 5′ UTRs, alternate mechanisms must exist to promote translation. We identified a specific defect in the synthesis of the mitochondrial DNA (mtDNA)-encoded COX I subunit in a pedigree segregating late-onset Leigh syndrome and cytochrome c oxidase (COX) deficiency. We mapped the defect to chromosome 17q by functional complementation and identified a homozygous single-base-pair insertion in CCDC44, encoding a member of a large family of hypothetical proteins containing a conserved DUF28 domain. CCDC44, renamed TACO1 for translational activator of COX I, shares a notable degree of structural similarity with bacterial homologs, and our findings suggest that it is one of a family of specific mammalian mitochondrial translational activators.
Biochimica et Biophysica Acta | 2012
Christopher T. Campbell; Jill E. Kolesar; Brett A. Kaufman
Mitochondrial transcription factor A (mtTFA, mtTF1, TFAM) is an essential protein that binds mitochondrial DNA (mtDNA) with and without sequence specificity to regulate both mitochondrial transcription initiation and mtDNA copy number. The abundance of mtDNA generally reflects TFAM protein levels; however, the precise mechanism(s) by which this occurs remains a matter of debate. Data suggest that the usage of mitochondrial promoters is regulated by TFAM dosage, allowing TFAM to affect both gene expression and RNA priming for first strand mtDNA replication. Additionally, TFAM has a non-specific DNA binding activity that is both cooperative and high affinity. TFAM can compact plasmid DNA in vitro, suggesting a structural role for the non-specific DNA binding activity in genome packaging. This review summarizes TFAM-mtDNA interactions and describes an emerging view of TFAM as a multipurpose coordinator of mtDNA transactions, with direct consequences for the maintenance of gene expression and genome copy number. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Journal of Cell Biology | 2003
Brett A. Kaufman; Jill E. Kolesar; Philip S. Perlman; Ronald A. Butow
The yeast mitochondrial chaperonin Hsp60 has previously been implicated in mitochondrial DNA (mtDNA) transactions: it is found in mtDNA nucleoids associated with single-stranded DNA; it binds preferentially to the template strand of active mtDNA ori sequences in vitro; and wild-type (ρ+) mtDNA is unstable in hsp60 temperature-sensitive (ts) mutants grown at the permissive temperature. Here we show that the mtDNA instability is caused by a defect in mtDNA transmission to daughter cells. Using high resolution, fluorescence deconvolution microscopy, we observe a striking alteration in the morphology of mtDNA nucleoids in ρ+ cells of an hsp60-t s mutant that suggests a defect in nucleoid division. We show that ρ− petite mtDNA consisting of active ori repeats is uniquely unstable in the hsp60-t s mutant. This instability of ori ρ− mtDNA requires transcription from the canonical promoter within the ori element. Our data suggest that the nucleoid dynamics underlying mtDNA transmission are regulated by the interaction between Hsp60 and mtDNA ori sequences.
The EMBO Journal | 2001
David M. MacAlpine; Jill E. Kolesar; Koji Okamoto; Ronald A. Butow; Philip S. Perlman
Wild‐type yeast mitochondrial DNA (mtDNA) is inherited biparentally, whereas mtDNA of hypersuppressive petite mutants is inherited uniparentally in crosses to strains with wild‐type mtDNA. Genomes of hypersuppressive petites contain a conserved ori sequence that includes a promoter, but it is unclear whether the ori confers a segregation or replication advantage. Fluorescent in situ hybridization analysis of wild‐type and petite mtDNAs in crosses reveals no preferential segregation of hypersuppressive petite mtDNA to first zygotic buds. We identify single‐stranded DNA circles and RNA‐primed DNA replication intermediates in hypersuppressive petite mtDNA that are absent from non‐hypersuppressive petites. Mutating the promoter blocks hypersuppressiveness in crosses to wild‐type strains and eliminates the distinctive replication intermediates. We propose that promoter‐dependent RNA‐primed replication accounts for the uniparental inheritance of hypersuppressive petite mtDNA.
Science Signaling | 2015
Santhanam Shanmughapriya; Sudarsan Rajan; Nicholas E. Hoffman; Xue-Qian Zhang; Shuchi Guo; Jill E. Kolesar; Kevin J. Hines; Jonathan Ragheb; Neelakshi R. Jog; Roberto Caricchio; Yoshihiro Baba; Brett A. Kaufman; Joseph Y. Cheung; Tomohiro Kurosaki; Donald L. Gill; Muniswamy Madesh
Calcium signaling stimulates the accumulation of the mitochondrial calcium uniporter to regulate mitochondrial metabolism. Maintaining mitochondrial calcium uptake The calcium uniporter complex, which includes the protein MCU, mediates mitochondrial calcium uptake, a process that buffers excess cytosolic calcium and regulates mitochondrial metabolism. Shanmughapriya et al. examined mitochondrial calcium uptake and function in a B lymphocyte cell line deficient in one or more proteins necessary for mediating two types of calcium signals—IICR, calcium released from the endoplasmic reticulum through the calcium-permeable IP3 receptors, and SOCE, calcium influx through store-operated calcium channels. Without IICR or SOCE, the activity of the transcription factor CREB, which bound to the MCU promoter, and the expression and abundance of MCU were reduced, mitochondrial calcium uptake was compromised, and mitochondrial metabolism was altered. Cells deficient in IICR or SOCE lacked an oscillating basal calcium signal. Thus, IICR and SOCE control the capacity of mitochondria to uptake calcium and therefore regulate mitochondrial metabolism. Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+-permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+-regulated transcription factor CREB (cyclic adenosine monophosphate response element–binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+-dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.
Nucleic Acids Research | 2013
Jill E. Kolesar; Catherine Y. Wang; Yumiko V. Taguchi; Shih-Hsuan Chou; Brett A. Kaufman
The mitochondrial genome exists in numerous structural conformations, complicating the study of mitochondrial DNA (mtDNA) metabolism. Here, we describe the development of 2D intact mtDNA agarose gel electrophoresis (2D-IMAGE) for the separation and detection of approximately two-dozen distinct topoisomers. Although the major topoisomers were well conserved across many cell and tissue types, unique differences in certain cells and tissues were also observed. RNase treatment revealed that partially hybridized RNAs associated primarily with covalently closed circular DNA, consistent with this structure being the template for transcription. Circular structures composed of RNA:DNA hybrids contained only heavy-strand DNA sequences, implicating them as lagging-strand replication intermediates. During recovery from replicative arrest, 2D-IMAGE showed changes in both template selection and replication products. These studies suggest that discrete topoisomers are associated with specific mtDNA-directed processes. Because of the increased resolution, 2D-IMAGE has the potential to identify novel mtDNA intermediates involved in replication or transcription, or pathology including oxidative linearization, deletions or depletion.
Journal of Clinical Oncology | 2010
Suresh S. Ramalingam; Ju Whei Lee; Chandra P. Belani; Seena C. Aisner; Jill E. Kolesar; Craig Howe; Mario R. Velasco; Joan H. Schiller
PURPOSE Inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase have demonstrated modest anticancer activity in advanced bronchioloalveolar carcinoma (BAC). We conducted a phase II study to evaluate cetuximab for the treatment of advanced BAC. PATIENTS AND METHODS Patients with advanced-stage pure BAC or adenocarcinoma with BAC features, fewer than two prior chemotherapy regimens, and Eastern Cooperative Oncology Group (ECOG) performance status of 0 to 2 were eligible. Those with prior EGFR inhibitor therapy were excluded. Cetuximab was given as a weekly intravenous infusion at 250 mg/m(2) after an initial loading dose of 400 mg/m(2) in week 1. The primary end point was determination of response rate. EGFR and KRAS mutations were evaluated by pyrosequencing. RESULTS Seventy-two patients were enrolled and 68 met eligibility requirements. Characteristics of patients included median age, 71 years; sex, 57% females; PS 0 or 1, 88% of patients; and smoking status, 19% never-smokers. Central pathology review confirmed the diagnosis in 45 of 49 available specimens. Approximately 50% of patients received more than two cycles of therapy (> 8 weeks). Skin rash was the most common toxicity (grade 3, 15%). The confirmed response rate was 7%, and stable disease was observed in 35%. The median survival and progression-free survival were 13 and 3.3 months, respectively. Only one of the six patients with an EGFR mutation and one of the seven patients with a KRAS mutation had a partial response. CONCLUSION Cetuximab was associated with modest efficacy in patients with advanced BAC, despite a low response rate. EGFR and KRAS mutations were not predictive of response to cetuximab.
bioRxiv | 2018
Micol Falabella; Jill E. Kolesar; Irene M Xiang; Ting Wang; William Horne; Callen Wallace; Linqing Sun; Yumiko V. Taguchi; Catherine Y. Wang; Josh Turek-Herman; Claudette M. St. Croix; Neal Sondheimer; Liliya A. Yatsunyk; F. Brad Johnson; Brett A. Kaufman
Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Predicted G4-forming sequences in the mitochondrial genome are enriched on the heavy-strand and have been associated with formation of deletion breakpoints that cause mitochondrial disorders. However, the functional roles of G4 structures in regulating mitochondrial respiration in non-cancerous cells remain unclear. Here, we demonstrate that RHPS4, previously thought to be a nuclear G4-ligand, localizes primarily to mitochondria in live cells by mechanisms involving mitochondrial membrane potential. We find that RHPS4 exposure causes an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. At higher ligand doses, RHPS4 causes mitochondrial DNA (mtDNA) replication pausing and genome depletion. Using these different levels of RHPS4 exposure, we describe discrete nuclear gene expression responses associated with mitochondrial transcription inhibition or with mtDNA depletion. Importantly, a mtDNA variant with increased anti-parallel G4-forming characteristic shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-structure mediated. Thus, we demonstrate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells and describe the first molecule that differentially recognizes G4 structures in mtDNA.
BMC Genomics | 2014
Dawei W. Dong; Filipe Pereira; Steven P. Barrett; Jill E. Kolesar; Kajia Cao; Joana Damas; Liliya A. Yatsunyk; F. Brad Johnson; Brett A. Kaufman