Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill F. Wright is active.

Publication


Featured researches published by Jill F. Wright.


Science | 2011

Chronic Mucocutaneous Candidiasis in Humans with Inborn Errors of Interleukin-17 Immunity

Anne Puel; Sophie Cypowyj; Jacinta Bustamante; Jill F. Wright; Luyan Liu; Hye Kyung Lim; Mélanie Migaud; Laura Israel; Maya Chrabieh; Matthew Gumbleton; Antoine Toulon; C. Bodemer; Jamila El-Baghdadi; Matthew J. Whitters; Theresa Paradis; Jonathan Brooks; Mary Collins; Neil M. Wolfman; Saleh Al-Muhsen; Miguel Galicchio; Laurent Abel; Capucine Picard; Jean-Laurent Casanova

Chronic yeast infections in the absence of other infections result from genetic deficiencies in proinflammatory host responses. Chronic mucocutaneous candidiasis disease (CMCD) is characterized by recurrent or persistent infections of the skin, nails, and oral and genital mucosae caused by Candida albicans and, to a lesser extent, Staphylococcus aureus, in patients with no other infectious or autoimmune manifestations. We report two genetic etiologies of CMCD: autosomal recessive deficiency in the cytokine receptor, interleukin-17 receptor A (IL-17RA), and autosomal dominant deficiency of the cytokine interleukin-17F (IL-17F). IL-17RA deficiency is complete, abolishing cellular responses to IL-17A and IL-17F homo- and heterodimers. By contrast, IL-17F deficiency is partial, with mutant IL-17F–containing homo- and heterodimers displaying impaired, but not abolished, activity. These experiments of nature indicate that human IL-17A and IL-17F are essential for mucocutaneous immunity against C. albicans, but otherwise largely redundant.


Biochemical and Biophysical Research Communications | 2003

Inhibition of myostatin in adult mice increases skeletal muscle mass and strength

Lisa-Anne Whittemore; Kening Song; Xiangping Li; Jane Aghajanian; Monique V. Davies; Stefan Girgenrath; Jennifer J. Hill; Mary Jalenak; Pamela Kelley; Andrea Knight; Rich Maylor; Denise O’Hara; Adele A. Pearson; Amira Quazi; Stephanie Ryerson; Xiang-Yang Tan; Kathleen N. Tomkinson; Geertruida M. Veldman; Angela Widom; Jill F. Wright; Steve Wudyka; Liz Zhao; Neil M. Wolfman

A human therapeutic that specifically modulates skeletal muscle growth would potentially provide a benefit for a variety of conditions including sarcopenia, cachexia, and muscular dystrophy. Myostatin, a member of the TGF-beta family of growth factors, is a known negative regulator of muscle mass, as mice lacking the myostatin gene have increased muscle mass. Thus, an inhibitor of myostatin may be useful therapeutically as an anabolic agent for muscle. However, since myostatin is expressed in both developing and adult muscles, it is not clear whether it regulates muscle mass during development or in adults. In order to test the hypothesis that myostatin regulates muscle mass in adults, we generated an inhibitory antibody to myostatin and administered it to adult mice. Here we show that mice treated pharmacologically with an antibody to myostatin have increased skeletal muscle mass and increased grip strength. These data show for the first time that myostatin acts postnatally as a negative regulator of skeletal muscle growth and suggest that myostatin inhibitors could provide a therapeutic benefit in diseases for which muscle mass is limiting.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases.

Neil M. Wolfman; Alexandra C. McPherron; William N. Pappano; Monique V. Davies; Kening Song; Kathleen N. Tomkinson; Jill F. Wright; Liz Zhao; Suzanne Sebald; Daniel S. Greenspan; Se-Jin Lee

Myostatin is a transforming growth factor β family member that acts as a negative regulator of skeletal muscle growth. Myostatin circulates in the blood of adult mice in a noncovalently held complex with other proteins, including its propeptide, which maintain the C-terminal dimer in a latent, inactive state. This latent form of myostatin can be activated in vitro by treatment with acid; however, the mechanisms by which latent myostatin is activated in vivo are unknown. Here, we show that members of the bone morphogenetic protein-1/tolloid (BMP-1/TLD) family of metalloproteinases can cleave the myostatin propeptide in this complex and can thereby activate latent myostatin. Furthermore, we show that a mutant form of the propeptide resistant to cleavage by BMP-1/TLD proteinases can cause significant increases in muscle mass when injected into adult mice. These findings raise the possibility that members of the BMP-1/TLD family may be involved in activating latent myostatin in vivo and that molecules capable of inhibiting these proteinases may be effective agents for increasing muscle mass for both human therapeutic and agricultural applications.


Journal of Immunology | 2007

An IL-17F/A Heterodimer Protein Is Produced by Mouse Th17 Cells and Induces Airway Neutrophil Recruitment

Spencer C. Liang; Andrew J. Long; Frann Bennett; Matthew J. Whitters; Riyez Karim; Mary Collins; Samuel J. Goldman; Kyriaki Dunussi-Joannopoulos; Cara Williams; Jill F. Wright; Lynette A. Fouser

IL-17A and IL-17F are related homodimeric proteins of the IL-17 family produced by Th17 cells. In this study, we show that mouse Th17 cells also produce an IL-17F/A heterodimeric protein. Whereas naive CD4+ T cells differentiating toward the Th17 cell lineage expressed IL-17F/A in higher amounts than IL-17A/A homodimer and in lower amounts than IL-17F/F homodimer, differentiated Th17 cells expressed IL-17F/A in higher amounts than either homodimer. In vitro, IL-17F/A was more potent than IL-17F/F and less potent than IL-17A/A in regulating CXCL1 expression. Neutralization of IL-17F/A with an IL-17A-specific Ab, and not with an IL-17F-specific Ab, reduced the majority of IL-17F/A-induced CXCL1 expression. To study these cytokines in vivo, we established a Th17 cell adoptive transfer model characterized by increased neutrophilia in the airways. An IL-17A-specific Ab completely prevented Th17 cell-induced neutrophilia and CXCL5 expression, whereas Abs specific for IL-17F or IL-22, a cytokine also produced by Th17 cells, had no effects. Direct administration of mouse IL-17A/A or IL-17F/A, and not IL-17F/F or IL-22, into the airways significantly increased neutrophil and chemokine expression. Taken together, our data elucidate the regulation of IL-17F/A heterodimer expression by Th17 cells and demonstrate an in vivo function for this cytokine in airway neutrophilia.


Journal of Biological Chemistry | 2007

Identification of an Interleukin 17F/17A Heterodimer in Activated Human CD4+ T Cells

Jill F. Wright; Yongjing Guo; Amira Quazi; Deborah Luxenberg; Frann Bennett; John F. Ross; Yongchang Qiu; Matthew J. Whitters; Kathleen N. Tomkinson; Kyri Dunussi-Joannopoulos; Beatriz M. Carreno; Mary Collins; Neil M. Wolfman

IL-17F and IL-17A are members of the IL-17 pro-inflammatory cytokine family. IL-17A has been implicated in the pathogenesis of autoimmune diseases. IL-17F is a disulfide-linked dimer that contains a cysteine-knot motif. We hypothesized that IL-17F and IL-17A could form a heterodimer due to their sequence homology and overlapping pattern of expression. We evaluated the structure of recombinant IL-17F and IL-17A proteins, as well as that of natural IL-17F and IL-17A derived from activated human CD4+ T cells, by enzyme-linked immunosorbent assay, immunoprecipitation followed by Western blotting, and mass spectrometry. We find that both IL-17F and IL-17A can form both homodimeric and heterodimeric proteins when expressed in a recombinant system, and that all forms of the recombinant proteins have in vitro functional activity. Furthermore, we find that in addition to the homodimers of IL-17F and IL-17A, activated human CD4+ T cells also produce the IL-17F/IL-17A heterodimer. These data suggest that the IL-17F/IL-17A heterodimer may contribute to the T cell-mediated immune responses.


Journal of Immunology | 2008

The Human IL-17F/IL-17A Heterodimeric Cytokine Signals through the IL-17RA/IL-17RC Receptor Complex

Jill F. Wright; Frann Bennett; Bilian Li; Jonathan Brooks; Deborah Luxenberg; Matthew J. Whitters; Kathleen N. Tomkinson; Lori Fitz; Neil M. Wolfman; Mary Collins; Kyri Dunussi-Joannopoulos; Moitreyee Chatterjee-Kishore; Beatriz M. Carreno

IL-17A and IL-17F, produced by the Th17 CD4+ T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4+ T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.


Immunological Reviews | 2008

Th17 cytokines and their emerging roles in inflammation and autoimmunity

Lynette A. Fouser; Jill F. Wright; Kyriaki Dunussi-Joannopoulos; Mary Collins

Summary: T‐helper 17 (Th17) cells are a new lineage of CD4+ T cells that are characterized by their production of interleukin‐17A (IL‐17A). Recent studies show that these cells can also express IL‐17F, IL‐22, and IL‐21. IL‐17A and IL‐17F can form a heterodimeric cytokine, which mediates biological activities, at least in part, through shared receptors with IL‐17A and IL‐17F homodimers. The cytokines made by Th17 cells represent three distinct gene families, highlighting the unique biology of these cells. Accumulating data support a role for Th17 cells and these cytokines in inflammatory processes and in animal models of autoimmunity or inflammation. Emerging data in clinical trials support our understanding of the importance of Th17 cells in inflammatory disease. Future clinical studies will allow us to evaluate the role of each cytokine independently in contributing to human diseases with immune‐mediated pathologies and to design optimal cytokine‐targeted therapies for these diseases.


Mucosal Immunology | 2013

Th17-cell plasticity in Helicobacter hepaticus –induced intestinal inflammation

Peter J. Morrison; David Bending; Lynette A. Fouser; Jill F. Wright; B Stockinger; A Cooke; Marika C. Kullberg

Bacterial-induced intestinal inflammation is crucially dependent on interleukin (IL)-23 and is associated with CD4+ T helper type 1 (Th1) and Th17 responses. However, the relative contributions of these subsets during the induction and resolution of colitis in T-cell-sufficient hosts remain unknown. We report that Helicobacter hepaticus–induced typhlocolitis in specific pathogen-free IL-10−/− mice is associated with elevated frequencies and numbers of large intestinal interferon (IFN)-γ+ and IFN-γ+IL-17A+ CD4+ T cells. By assessing histone modifications and transcript levels in IFN-γ+, IFN-γ+IL-17A+, and IL-17A+ CD4+ T cells isolated from the inflamed intestine, we show that Th17 cells are predisposed to upregulate the Th1 program and that they express IL-23R but not IL-12R. Using IL-17A fate-reporter mice, we further demonstrate that H. hepaticus infection gives rise to Th17 cells that extinguish IL-17A secretion and turn on IFN-γ within 10 days post bacterial inoculation. Together, our results suggest that bacterial-induced Th17 cells arising in disease-susceptible hosts contribute to intestinal pathology by switching phenotype, transitioning via an IFN-γ+IL-17A+ stage, to become IFN-γ+ ex-Th17 cells.


Journal of Immunology | 2010

Complement C3a, CpG Oligos, and DNA/C3a Complex Stimulate IFN-α Production in a Receptor for Advanced Glycation End Product-Dependent Manner

Benfang Helen Ruan; Xin Li; Aaron Winkler; Kristina Cunningham; Jun Kuai; Rita Greco; Karl Nocka; Lori Fitz; Jill F. Wright; Debra D. Pittman; Xiang-Yang Tan; Janet E. Paulsen; Lih Ling Lin; David Winkler

The receptor for advanced glycation end products (RAGE) is a multiligand transmembrane receptor implicated in a number of diseases including autoimmune diseases. To further understand the pathogenic mechanism of RAGE in these diseases, we searched for additional ligands. We discovered that C3a bound to RAGE with an EC50 of 1.9 nM in an ELISA, and the binding was increased both in magnitude (by >2-fold) and in affinity (EC50 70 pM) in the presence of human stimulatory unmethylated cytosine-guanine-rich DNA A (hCpGAs). Surface plasmon resonance and fluorescence anisotropy analyses demonstrated that hCpGAs could bind directly to RAGE and C3a and form a ternary complex. In human PBMCs, C3a increased IFN-α production in response to low levels of hCpGAs, and this synergy was blocked by soluble RAGE or by an Ab directed against RAGE. IFN-α production was reduced in response to mouse CpGAs and C3a in RAGE−/− mouse bone marrow cells compared wild-type mice. Taken together, these data demonstrate that RAGE is a receptor for C3a and CpGA. Through direct interaction, C3a and CpGA synergize to increase IFN-α production in a RAGE-dependent manner and stimulate an innate immune response. These findings indicate a potential role of RAGE in autoimmune diseases that show accumulation of immunostimulatory DNA and C3a.


Analytical Biochemistry | 2010

A fluorescent assay suitable for inhibitor screening and vanin tissue quantification.

Benfang H. Ruan; Derek C. Cole; Paul Wu; Amira Quazi; Karen Page; Jill F. Wright; Nelson Huang; Joseph Stock; Karl Nocka; Ann Aulabaugh; Rustem Krykbaev; Lori Fitz; Neil M. Wolfman; Margaret Fleming

Vanin-1 is a pantetheinase that catalyzes the hydrolysis of pantetheine to produce pantothenic acid (vitamin B5) and cysteamine. Reported here is a highly sensitive fluorescent assay using a novel fluorescently labeled pantothenate derivative. The assay has been used for characterization of a soluble version of human vanin-1 recombinant protein, identification and characterization of hits from high-throughput screening (HTS), and quantification of vanin pantothenase activity in cell lines and tissues. Under optimized assay conditions, we quantified vanin pantothenase activity in tissue lysate and found low activity in lung and liver but high activity in kidney. We demonstrated that the purified recombinant vanin-1 consisting of the extracellular portion without the glycosylphosphatidylinositol (GPI) linker was highly active with an apparent K(m) of 28 microM for pantothenate-7-amino-4-methylcoumarin (pantothenate-AMC), which was converted to pantothenic acid and AMC based on liquid chromatography-mass spectrometry (LC-MS) analysis. The assay also performed well in a 384-well microplate format under initial rate conditions (10% conversion) with a signal-to-background ratio (S/B) of 7 and a Z factor of 0.75. Preliminary screening of a library of 1280 pharmaceutically active compounds identified inhibitors with novel chemical scaffolds. This assay will be a powerful tool for target validation and drug lead identification and characterization.

Collaboration


Dive into the Jill F. Wright's collaboration.

Top Co-Authors

Avatar

Beatriz M. Carreno

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge