Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill L. Bubier is active.

Publication


Featured researches published by Jill L. Bubier.


Global Biogeochemical Cycles | 2003

Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog

Peter M. Lafleur; Nigel T. Roulet; Jill L. Bubier; Steve Frolking; Tim R. Moore

This loss was equivalent to between 30 and 70% of the net CO2 uptake during the growing season. During the first 3 years of study, the bog was an annual sink for CO2 (260 g CO2 m 2 yr 1 ). In the fourth year, with the dry summer, however, annual NEE was only 34 g CO2 m 2 yr 1 , which is not significantly different from zero. We examined the performance of a peatland carbon simulator (PCARS) model against the tower measurements of NEE and derived ecosystem respiration (ER) and photosynthesis (PSN). PCARS ER and PSN were highly correlated with tower-derived fluxes, but the model consistently overestimated both ER and PSN, with slightly poorer comparisons in the dry year. As a result of both component fluxes being overestimated, PCARS simulated the tower NEE reasonably well. Simulated decomposition and autotrophic respiration contributed about equal proportions to ER. Shrubs accounted for the greatest proportion of PSN (85%); moss PSN declined to near zero during the summer period due to surface drying. INDEX TERMS: 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; 1615 Global Change: Biogeochemical processes (4805); 1890 Hydrology: Wetlands; KEYWORDS: peatland, bog, net ecosystem exchange, eddy covariance, carbon dioxide


Global Biogeochemical Cycles | 1999

Controls on CH4 emissions from a northern peatland

Lianne Bellisario; Jill L. Bubier; Tim R. Moore; J. P. Chanton

We examined the controls on summer CH4 emission from five sites in a peatland complex near Thompson, Manitoba, Canada, representing a minerotrophic gradient from bog to rich fen at wet sites, where the water table positions ranged from −10 to −1 cm. Average CH4 flux, determined by static chambers on collars, ranged from 22 to 239 mg CH4−C m−2 d−1 and was related to peat temperature. There was an inverse relationship between water table position and CH4 flux: higher water tables led to smaller fluxes. The determination of anaerobic CH4 production and aerobic CH4 consumption potentials in laboratory incubations of peat samples was unable to explain much of the variation in CH4 flux. Average net ecosystem exchange of CO2 ranged from 1.4 to 2.5 g CO2−C m−2 d−1 and was strongly correlated with CH4 flux; CH4 emission averaged 4% of CO2 uptake. End-of-season sedge biomass was also strongly related to CH4 flux, indicating the important role that vascular plants play in regulating CH4 flux. Determination of isotopic signatures in peat pore water CH4 revealed average δ13C values of between −50 and −73‰ and δD of between −368 and −388‰. Sites with large CH4 emission rates also had high CO2 exchange rates and enriched δ13C CH4 signatures, suggesting the importance of the acetate fermentation pathway of methanogenesis. Comparison of δD and δ13C signatures in pore water CH4 revealed a slope shallow enough to suggest that oxidation is not an important overall control on CH4 emissions at these sites, though it appeared to be important at one site. Analysis of 14C in pore water CH4 showed that most of the CH4 was of recent origin with percent of modern carbon values of between 112 and 128%. The study has shown the importance of vascular plant activities in controlling CH4 emissions from these wetland sites through influences on the availability of fresh plant material for methanogenesis, rhizospheric oxidation, and plant transport of CH4.


Ecosystems | 2003

Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada

Jill L. Bubier; Gaytri Bhatia; Tim R. Moore; Nigel T. Roulet; Peter M. Lafleur

We measured net ecosystem exchange of carbon dioxide (CO2) (NEE) during wet and dry summers (2000 and 2001) across a range of plant communities at Mer Bleue, a large peatland near Ottawa, southern Ontario, Canada. Wetland types included ombrotrophic bog hummocks and hollows, mineral-poor fen, and beaver pond margins. NEE was significantly different among the sites in both years, but rates of gross photosynthesis did not vary spatially even though species composition at the sites was variable. Soil respiration rates were very different across sites and dominated interannual variability in summer NEE within sites. During the dry summer of 2001, net CO2 uptake was significantly smaller, and most locations switched from a net sink to a source of CO2 under a range of levels of photosynthetically active radiation (PAR). The wetter areas—poor fen and beaver pond margin— had the largest rates of CO2 uptake and smallest rates of respiratory loss during the dry summer. Communities dominated by ericaceous shrubs (bog sites) maintained similar rates of gross photosynthesis between years; by contrast, the sedge-dominated areas (fen sites) showed signs of early senescence under drought conditions. Water table position was the strongest control on respiration in the drier summer, whereas surface peat temperature explained most of the variability in the wetter summer. Q 10 temperature-respiration quotients averaged 1.6 to 2.2. The ratio between maximum photosynthesis and respiration ranged from 3.7:1 in the poor fen to 1.2:1 at some bog sites; it declined at all sites in the drier summer owing to greater respiration rates relative to photosynthesis in evergreen shrub sites and a change in both processes in sedge sites. Our ability to predict ecosystem responses to changing climate depends on a more complete understanding of the factors that control NEE across a range of peatland plant communities.


Global Biogeochemical Cycles | 1995

Ecological controls on methane emissions from a Northern Peatland Complex in the zone of discontinuous permafrost, Manitoba, Canada

Jill L. Bubier; Tim R. Moore; Lianne Bellisario; Neil T. Comer; Patrick M. Crill

Methane emissions were measured by a static chamber technique in a diverse peatland complex in the Northern Study Area (NSA) of the Boreal Ecosystem Atmosphere Study (BOREAS). Sampling areas represented a wide range of plant community and hydrochemical gradients (pH 3.9–7.0). Emissions were generally larger than those reported from other boreal wetland environments at similar latitude. Seasonal average fluxes from treed peatlands (including palsas) ranged from 0 to 20 mg CH4 m−2 d−1 compared with 92 to 380 mg CH4 m−2 d−1 in open graminoid bogs and fens (with maximum single fluxes up to 1355 mg CH4 m−2 d−1). Permafrost-related collapse scars had similarly high CH4 emissions, particularly in the lag areas where continuous measurements of water table, peat surface elevation, and peat temperature showed that the peat surface adjusted to a falling water table in the abnormally dry 1994 season, maintaining warm, saturated conditions and high CH4 flux later into the season than nonfloating sites. A predictive model for CH4 flux and environmental variables was developed using multiple stepwise regression. A combined variable of mean seasonal peat temperature at the average position of the water table explained most of the spatial variability in log CH4 flux (r2 = 0.64), with height above mean water table (HMWT), water chemistry (Kcorr, pH, Ca), tree cover, and herbaceous plant cover explaining additional variance (r2 = 0.81). Canonical correspondence analysis (CCA) of combined vascular and bryophyte data with environmental variables showed that CH4 flux was negatively correlated with HMWT, the second axis of vegetation variability, and was only weakly correlated with chemistry, the first axis. Sedge and tree cover were correlated with high and low CH4 fluxes, respectively, while shrub cover was of less predictive value. Microtopographic groupings of hummocks and hollows were separated in terms of CH4 flux at the intermediate ranges of the moisture gradient. These data show that multivariate vegetation analyses may provide a useful framework for integrating the complex environmental controls on CH4 flux and extrapolating single point chamber measurements to the landscape scale using remote sensing. (Key words: CH4 flux, peatland, vegetation, and remote sensing.)


Global Biogeochemical Cycles | 1998

Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex

Jill L. Bubier; Patrick M. Crill; Tim R. Moore; Kathleen Savage; Ruth K. Varner

We measured seasonal patterns of net ecosystem exchange (NEE) of CO2 in a diverse peatland complex underlain by discontinuous permafrost in northern Manitoba, Canada, as part of the Boreal Ecosystems Atmosphere Study (BOREAS). Study sites spanned the full range of peatland trophic and moisture gradients found in boreal environments from bog (pH 3.9) to rich fen (pH 7.2). During midseason (July-August, 1996), highest rates of NEE and respiration followed the trophic sequence of bog (5.4 to −3.9 μmol CO2 m−2 s−1) < poor fen (6.3 to −6.5 μmol CO2 m−2 s−1) < intermediate fen (10.5 to −7.8 μmol CO2 m−2 s−1) < rich fen (14.9 to −8.7 μmol CO2m−2 s−1). The sequence changed during spring (May-June) and fall (September-October) when ericaceous shrub (e.g., Chamaedaphne calyculata) bogs and sedge (Carex spp.) communities in poor to intermediate fens had higher maximum CO2 fixation rates than deciduous shrub-dominated (Salix spp. and Betula spp.) rich fens. Timing of snowmelt and differential rates of peat surface thaw in microtopographic hummocks and hollows controlled the onset of carbon uptake in spring. Maximum photosynthesis and respiration were closely correlated throughout the growing season with a ratio of approximately 1/3 ecosystem respiration to maximum carbon uptake at all sites across the trophic gradient. Soil temperatures above the water table and timing of surface thaw and freeze-up in the spring and fall were more important to net CO2 exchange than deep soil warming. This close coupling of maximum CO2 uptake and respiration to easily measurable variables, such as trophic status, peat temperature, and water table, will improve models of wetland carbon exchange. Although trophic status, aboveground net primary productivity, and surface temperatures were more important than water level in predicting respiration on a daily basis, the mean position of the water table was a good predictor (r2 = 0.63) of mean respiration rates across the range of plant community and moisture gradients. Q10 values ranged from 3.0 to 4.1 from bog to rich fen, but when normalized by above ground vascular plant biomass, the Q10 for all sites was 3.3.


Global Biogeochemical Cycles | 1998

Relationship Between Ecosystem Productivity and Photosynthetically Active Radiation for Northern Peatlands

Steve Frolking; Jill L. Bubier; Tim R. Moore; T. Ball; Lianne Bellisario; A. Bhardwaj; P. Carroll; Patrick M. Crill; Peter M. Lafleur; J. H. McCaughey; Nigel T. Roulet; Andrew E. Suyker; Shashi B. Verma; J. M. Waddington; Gary J. Whiting

We analyzed the relationship between net ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density or PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe. NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data sets by peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = α PPFD Pmax/(α PPFD + Pmax) + R) better described the NEE-PPFD relationship than did a linear fit (NEE = β PPFD + R). Poor and rich fens generally had similar NEE-PPFD relationships, while bogs had lower respiration rates (R = −2.0μmol m−2s−1 for bogs and −2.7 μmol m−2s−1 for fens) and lower NEE at moderate and high light levels (Pmax = 5.2 μmol m−2s−1 for bogs and 10.8 μmol m−2s−1 for fens). As a single class, northern peatlands had much smaller ecosystem respiration (R = −2.4 μmol m−2s−1) and NEE rates (α = 0.020 and Pmax = 9.2μmol m−2s−1) than the upland ecosystems (closed canopy forest, grassland, and cropland) summarized by Ruimy et al. [1995]. Despite this low productivity, northern peatland soil carbon pools are generally 5–50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils.


Global Change Biology | 2014

A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands

Merritt R. Turetsky; Agnieszka Kotowska; Jill L. Bubier; Nancy B. Dise; Patrick M. Crill; Ed R.C. Hornibrook; Kari Minkkinen; Tim R. Moore; Isla H. Myers-Smith; Hannu Nykänen; David Olefeldt; Janne Rinne; Sanna Saarnio; Narasinha J. Shurpali; Eeva-Stiina Tuittila; J. Michael Waddington; Jeffrey R. White; Kimberly P. Wickland; Martin Wilmking

Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.


Global Biogeochemical Cycles | 2002

Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada

Steve Frolking; Nigel T. Roulet; Tim R. Moore; Peter M. Lafleur; Jill L. Bubier; Patrick M. Crill

[1] Northern peatlands contain enormous quantities of organic carbon within a few meters of the atmosphere and play a significant role in the planetary carbon balance. We have developed a new, process-oriented model of the contemporary carbon balance of northern peatlands, the Peatland Carbon Simulator (PCARS). Components of PCARS are (1) vascular and nonvascular plant photosynthesis and respiration, net aboveground and belowground production, and litterfall; (2) aerobic and anaerobic decomposition of peat; (3) production, oxidation, and emission of methane; and (4) dissolved organic carbon loss with drainage water. PCARS has an hourly time step and requires air and soil temperatures, incoming radiation, water table depth, and horizontal drainage as drivers. Simulations predict a complete peatland C balance for one season to several years. A 3-year simulation was conducted for Mer Bleue Bog, near Ottawa, Ontario, and results were compared with multiyear eddy covariance tower CO2 flux and ancillary measurements from the site. Seasonal patterns and the general magnitude of net ecosystem exchange of CO2 were similar for PCARS and the tower data, though PCARS was generally biased toward net ecosystem respiration (i.e., carbon loss). Gross photosynthesis rates (calculated directly in PCARS, empirically inferred from tower data) were in good accord, so the discrepancy between model and measurement was likely related to autotrophic and/or heterotrophic respiration. Modeled and measured methane emission rates were quite low. PCARS has been designed to link with the Canadian Land Surface Scheme (CLASS) land surface model and a global climate model (GCM) to examine climate-peatland carbon feedbacks at regional scales in future analyses. INDEX TERMS: 1615 Global Change: Biogeochemical processes (4805); 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 1890 Hydrology: Wetlands; 9350 Information Related to Geographic Region: North America; KEYWORDS: peatland, decomposition, NPP, NEE, carbon accumulation, model


Global Biogeochemical Cycles | 1997

Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada

L. K. Liblik; Tim R. Moore; Jill L. Bubier; Stephen D. Robinson

We examined the influence of water table position, temperature, vegetation, and CH 4 storage on CH 4 flux at 22 wetland sites located in the zone of discontinuous permafrost, near Fort Simpson, Northwest Territories. Sites ranged from frozen peat plateaux and palsas with collapse scars to fens and bogs and ponds. Mean summer CH4 emissions ranged from -1.3 to 255 mg m -2 d -1 , and the variation among sites was best explained by mean water table position (r 2 = 0.62, n = 19). Large CH 4 fluxes (>30 mg m -2 d -1 ) and high water tables occurred in ponds and graminoid sites, whereas small fluxes ( < 30 mg m -2 d -1 ) and low water tables occur in shrub and woody sites. These relationships were upheld across several northern boreal regions, based on water table depth and broad ecological criteria. CH4 turnover times were generated by comparing surficial fluxes and storage within the saturated portion of the peat profile. Graminoid sites had CH 4 turnover times from 1 to 4 days, whereas shrub or woody sites had longer turnover times, ranging from weeks to years. We estimated an overall flux of ∼ 18 mg m -2 d -1 for the landscape around Fort Simpson. This CH 4 flux may increase with the onset of global warming, owing to the fragility of permafrost, resulting in the formation of collapse scars with high CH 4 emission rates.


Journal of Geophysical Research | 1999

Net ecosystem productivity and its uncertainty in a diverse boreal peatland

Jill L. Bubier; Steve Frolking; Patrick M. Crill; Ernst Linder

Net ecosystem exchange (NEE) of CO2 was measured in four peatlands along plant community, hydrologic, and water chemistry gradients from bog to rich fen in a diverse peatland complex near Thompson, Manitoba, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). A simple model for estimating growing season net ecosystem productivity (NEP) using continuous measurements of photosynthetically active radiation (PAR), and peat temperature was constructed with weekly chamber measurements of NEE from May to October 1996. The model explained 79–83% of the variation in NEE across the four sites. Model estimation and parameter uncertainty calculations were performed using nonlinear regression analyses with a maximum likelihood objective function. The model underestimated maximum NEE and respiration during the midseason when the standard errors for each parameter were greatest. On a daily basis, uncertainty in the midday NEE simulation was higher than at night. Although the magnitude of both photosynthesis and respiration rates followed the trophic gradient bog less than poor fen less than intermediate fen less than rich fen, NEP did not follow the same pattern. NEP in the bog and rich fen was close to zero, while the poor and intermediate fens had higher NEP due to a greater imbalance between uptake and release of CO2. Although all sites had a positive growing season NEP, upper and lower 95% confidence limits showed that the bog and rich fen were either a source or sink of CO2 to the atmosphere, while the sedge-dominated poor and intermediate fens were accumulating approximately 20–100 g CO2 C m−2 over the 5 month period in 1996. Peatland ecosystems may switch from a net sink to a source of carbon on short timescales with small changes in soil temperature or water table position. Since the difference between production and decomposition is small, it is important to understand and quantify the magnitude of uncertainty in these measurements in order to predict the effect of climatic change on peatland carbon exchange.

Collaboration


Dive into the Jill L. Bubier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve Frolking

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth K. Varner

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Mosedale

University of New Hampshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge