Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill L. Edmondson is active.

Publication


Featured researches published by Jill L. Edmondson.


Scientific Reports | 2012

Organic carbon hidden in urban ecosystems

Jill L. Edmondson; Zoe G. Davies; Nicola McHugh; Kevin J. Gaston; Jonathan R. Leake

Urbanization is widely presumed to degrade ecosystem services, but empirical evidence is now challenging these assumptions. We report the first city-wide organic carbon (OC) budget for vegetation and soils, including under impervious surfaces. Urban soil OC storage was significantly greater than in regional agricultural land at equivalent soil depths, however there was no significant difference in storage between soils sampled beneath urban greenspaces and impervious surfaces, at equivalent depths. For a typical U.K. city, total OC storage was 17.6 kg m−2 across the entire urban area (assuming 0 kg m−2 under 15% of land covered by buildings). The majority of OC (82%) was held in soils, with 13% found under impervious surfaces, and 18% stored in vegetation. We reveal that assumptions underpinning current national estimates of ecosystem OC stocks, as required by Kyoto Protocol signatories, are not robust and are likely to have seriously underestimated the contributions of urban areas.


Journal of Applied Ecology | 2013

REVIEW: Managing urban ecosystems for goods and services

Kevin J. Gaston; María L. Ávila‐Jiménez; Jill L. Edmondson

Summary Concomitant with the rise in the proportion of the global human population that resides in urban areas has been growth in awareness of the importance of the provision of ecosystem goods and services to those people. Urban areas are themselves of significance in this regard because of their areal extent, and hence the quantity of services falling within their bounds, and because of the need for local provision of services to urban residents. Here, we review key challenges to the effective management of ecosystem goods and services within urban areas. These challenges include the structure of green space, its temporal dynamics, spatial constraint on ecosystem service flows, occurrence of novel forms of flows, large numbers of land managers, conflicting management goals, possible differences between perceptions of urban dwellers and the reality of the distribution and flow of ecosystem services, and the ‘wicked’ nature of the problem of ecosystem service management. Synthesis and applications. Urban areas present very particular combinations of challenges and opportunities for the management of ecosystem goods and services. The spatial and temporal heterogeneity of green spaces greatly complicates the maintenance and improvement in service provision as well as dramatically inflating costs. Spatial constraints on ecosystem service flows mean that these can be highly dependent on the maintenance of particular areas of connectivity, but also that provision of additional key points of connectivity may be disproportionately beneficial to those flows. The existence of novel forms of flows of ecosystem services in urban areas offers means of overcoming spatial constraints on more natural flows, but will require the development of new kinds of ecosystem process models to inform their design and management. The large numbers of land managers, conflicts between the best approaches for managing for different goods and services, and frequent differences between the perceptions of urban dwellers and the reality of urban landscapes create a complex management context. The management of ecosystem goods and services is closely allied to the challenges of conventional urban planning. However, applied ecology has a broad range of tools available to assist in determining solutions, including the use of high-resolution remote sensing techniques, landscape ecology principles and theory (e.g. patch and matrix frameworks, meta-population models), and systematic conservation planning approaches.


Science of The Total Environment | 2014

Land-cover effects on soil organic carbon stocks in a European city☆

Jill L. Edmondson; Zoe G. Davies; Sarah A. McCormack; Kevin J. Gaston; Jonathan R. Leake

Soil is the vital foundation of terrestrial ecosystems storing water, nutrients, and almost three-quarters of the organic carbon stocks of the Earths biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a growing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces across a typical mid-sized U.K. city (Leicester, 73 km(2), 56% greenspace), and map citywide distribution of this ecosystem service. SOC was measured in topsoil and compared to surrounding extra-urban agricultural land. Average SOC storage in the citys greenspace was 9.9 kg m(-2), to 21 cm depth. SOC concentrations under trees and shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m(-2) to 21 cm depth, more than 3 kg m(-2) greater than any other land-cover class in domestic and non-domestic greenspace and 5 kg m(-2) greater than in arable land. Land-cover did not significantly affect SOC concentrations in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land, whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We conclude that although differences in greenspace management affect SOC stocks, trees only marginally increase these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and driveways.


Journal of Applied Ecology | 2014

Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

Jill L. Edmondson; Zoe G. Davies; Kevin J. Gaston; Jonathan R. Leake

Summary Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own‐growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non‐domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non‐domestic greenspaces, but was lower than that in garden soil. Three‐quarters of surveyed allotment plot holders added manure, 95% composted biomass on‐site, and many added organic‐based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications. Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small‐scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the involvement of over 800 million people in urban agriculture globally, and its important contribution to food security, our findings suggest that to better protect soil functions, local, national and international urban planning and policy making should promote more urban own‐growing in preference to further intensification of conventional agriculture to meet increasing food demand.


Biology Letters | 2011

Are soils in urban ecosystems compacted? A citywide analysis

Jill L. Edmondson; Zoe G. Davies; Sarah A. McCormack; Kevin J. Gaston; Jonathan R. Leake

Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.


Science of The Total Environment | 2010

Bio-indicators of nitrogen pollution in heather moorland

Jill L. Edmondson; Jacqueline A. Carroll; Elizabeth A. C. Price; Simon J.M. Caporn

Heather moorlands are internationally important ecosystems that are highly sensitive to eutrophication and acidification by reactive atmospheric nitrogen (N) deposition. We used a long-term experiment simulating wet-deposition of N on heather moorland to identify potential bio-indicators of N deposition. These indicators were subsequently employed in a survey covering a N deposition gradient ranging from approximately 7 to 31kg N ha(-1) yr(-1), at selected sites throughout the UK. In this regional survey litter phenol oxidase activity and bryophyte species richness were negatively associated with N deposition. Calluna vulgaris N:P ratios and litter extractable N were positively correlated with N deposition. The use of the suite of four bio-indicators has the potential to provide rapid assessment of the extent of N saturation of heather moorland sites and moorland ecosystem functioning, and has significant advantages over reliance on single measures such as soil N status or an individual bio-indicator species.


Archive | 2010

Urban Ecology: Urban environments and ecosystem functions

Kevin J. Gaston; Zoe G. Davies; Jill L. Edmondson

Urbanisation profoundly changes both the abiotic and biotic properties of ecosystems. It does so not just within urban areas, but also in surrounding landscapes and often much further afield. Traditionally, the foremost focus for research has been on the negative impacts of these changes, particularly for human health and wellbeing, and how these can most effectively be mitigated. This is readily understandable given that, for much of their history, urban environments have often been associated with high rates of infant mortality, disease outbreaks and a generally poor quality of life, and that this still remains true for many of those living in cities today (Woods 2003; UN-HABITAT 2006; Birchenall 2007). From a broader ecological perspective, urban areas have also long been considered depauperate in comparison to their rural counterparts in terms of flora and fauna, with the exception of a few notable species that were widely categorised as pests. More recently, research into urban environments has increasingly shifted towards examining the positive contributions that such areas can make both to the human population and to other species. Of course, viewing urban environments in terms of the benefits they can provide or the costs they can exact are essentially two sides of the same coin. However, closer consideration of the potential advantages has served to broaden the range of environmental issues that have received emphasis; rather than focusing almost exclusively on the undoubtedly vital human health concerns resulting from poor air quality, unclean water and inadequate sanitation, there is now a growing appreciation of the benefits that greener and more ecologically diverse urban areas have on the mental and physical status of residents, on economic markets and for biological conservation (Chapters 7–11; Fuller et al . 2010; Gaston & Evans 2010; Irvine et al . 2010).


Science of The Total Environment | 2013

The legacy of nitrogen pollution in heather moorlands: Ecosystem response to simulated decline in nitrogen deposition over seven years

Jill L. Edmondson; E. Terribile; Jacqueline A. Carroll; Elizabeth A. C. Price; Simon J.M. Caporn

Eutrophication and acidification of heather moorlands by chronic atmospheric nitrogen (N) pollution, is of major concern within these internationally important ecosystems. However, in the UK and Western Europe generally emissions of NO(y) and NH(x) peaked during the 20th century. Due to the history and scale of atmospheric N pollution, the legacy of these high levels of N deposition, through accumulation in soil, may hinder or prevent ecosystem recovery. Effects of N pollution on heather moorland were investigated throughout the ecosystem including; the dominant plant species, Calluna vulgaris, the bryophyte and lichen community and the soil system using a long-term experiment simulating wet N deposition. We observed an increase in C. vulgaris height, shoot extension and canopy density, litter mineral N, total N concentration, N:P and C:N ratios in response to N addition. Bryophyte species diversity, bryophyte and lichen frequency and the frequency of two individual bryophyte species (Lophozia ventricosa and Campylopus flexuosus) were significantly reduced by N addition. We developed an N recovery experiment, using a split-plot design, on the long-term N treatment plots to investigate ecosystem response to a simulated decline in N deposition. Two years after cessation of N treatment the only ecosystem component that responded to the recovery experiment was C. vulgaris shoot extension, however after seven years of recovery there were significant declines in litter total N concentration and mineral N and an increase in litter C:N ratio. Although bryophytes and lichens form a close relationship with atmospheric N deposition these organisms did not show a significant response to the N recovery experiment, two years after cessation of N treatment. These data indicate that low nutrient ecosystems, such as moorlands, have the capacity to respond to declines in N deposition however the accumulation of pollution may hinder recovery of sensitive organisms, such as bryophytes and lichens.


Scientific Reports | 2016

Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

Jill L. Edmondson; Iain Stott; Zoe G. Davies; Kevin J. Gaston; Jonathan R. Leake

Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.


Journal of Applied Ecology | 2015

Modelling short‐rotation coppice and tree planting for urban carbon management – a citywide analysis

Nicola McHugh; Jill L. Edmondson; Kevin J. Gaston; Jonathan R. Leake; Odhran S. O'Sullivan

Summary The capacity of urban areas to deliver provisioning ecosystem services is commonly overlooked and underutilized. Urban populations have globally increased fivefold since 1950, and they disproportionately consume ecosystem services and contribute to carbon emissions, highlighting the need to increase urban sustainability and reduce environmental impacts of urban dwellers. Here, we investigated the potential for increasing carbon sequestration, and biomass fuel production, by planting trees and short‐rotation coppice (SRC), respectively, in a mid‐sized UK city as a contribution to meeting national commitments to reduce CO 2 emissions. Iterative GIS models were developed using high‐resolution spatial data. The models were applied to patches of public and privately owned urban greenspace suitable for planting trees and SRC, across the 73 km2 area of the city of Leicester. We modelled tree planting with a species mix based on the existing tree populations, and SRC with willow and poplar to calculate biomass production in new trees, and carbon sequestration into harvested biomass over 25 years. An area of 11 km2 comprising 15% of the city met criteria for tree planting and had the potential over 25 years to sequester 4200 tonnes of carbon above‐ground. Of this area, 5·8 km2 also met criteria for SRC planting and over the same period this could yield 71 800 tonnes of carbon in harvested biomass. The harvested biomass could supply energy to over 1566 domestic homes or 30 municipal buildings, resulting in avoided carbon emissions of 29 236 tonnes of carbon over 25 years when compared to heating by natural gas. Together with the net carbon sequestration into trees, a total reduction of 33 419 tonnes of carbon in the atmosphere could be achieved in 25 years by combined SRC and tree planting across the city. Synthesis and applications. We demonstrate that urban greenspaces in a typical UK city are underutilized for provisioning ecosystem services by trees and especially SRC, which has high biomass production potential. For urban greenspace management, we recommend that planting SRC in urban areas can contribute to reducing food–fuel conflicts on agricultural land and produce renewable energy sources close to centres of population and demand.

Collaboration


Dive into the Jill L. Edmondson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon J.M. Caporn

Manchester Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Abhishek Tiwary

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Rylatt

De Montfort University

View shared research outputs
Researchain Logo
Decentralizing Knowledge