Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill M. Keller is active.

Publication


Featured researches published by Jill M. Keller.


Cancer Research | 2005

Bone Morphogenetic Protein-6 Promotes Osteoblastic Prostate Cancer Bone Metastases through a Dual Mechanism

Jinlu Dai; Jill M. Keller; Jian Zhang; Yi Lu; Zhi Yao; Evan T. Keller

Prostate cancer frequently metastasizes to bone where it forms osteoblastic lesions through unknown mechanisms. Bone morphogenetic proteins (BMP) are mediators of skeletal formation. Prostate cancer produces a variety of BMPs, including BMP-6. We tested the hypothesis that BMP-6 contributes to prostate cancer-induced osteosclerosis at bone metastatic sites. Prostate cancer cells and clinical tissues produced BMP-6 that increased with aggressiveness of the tumor. Prostate cancer-conditioned medium induced SMAD phosphorylation in the preosteoblast MC3T3 cells, and phosphorylation was diminished by anti-BMP-6 antibody. Prostate cancer-conditioned medium induced mineralization of MC3T3 cells, which was blocked by both the BMP inhibitor noggin and anti-BMP-6. Human fetal bones were implanted in severe combined immunodeficient mice and after 4 weeks, LuCaP 23.1 prostate cancer cells were injected both s.c. and into the bone implants. Anti-BMP-6 or isotype antibody administration was then initiated. Anti-BMP-6 reduced LuCaP 23.1-induced osteoblastic activity, but had no effect on its osteolytic activity. This was associated with increased osteoblast numbers and osteoblast activity based on bone histomorphometric evaluation. As endothelin-1 has been implicated in bone metastases, we measured serum endothelin-1 levels but found they were not different among the treatment groups. In addition to decreased bone production, anti-BMP-6 reduced intraosseous, but not s.c., tumor size. We found that BMP-2, BMP-4, BMP-6, and BMP-7 had no direct effect on prostate cancer cell growth, but BMP-2 and BMP-6 increased the in vitro invasive ability of prostate cancer cell. These data show that prostate cancer promotes osteoblastic activity through BMP-6 and that, in addition to its bone effects, suggest that BMPs promote the ability of the prostate cancer cells to invade the bone microenvironment.


Cancer Research | 2008

Prostate Cancer Induces Bone Metastasis through Wnt-Induced Bone Morphogenetic Protein-Dependent and Independent Mechanisms

Jinlu Dai; Christopher L. Hall; June Escara-Wilke; Atsushi Mizokami; Jill M. Keller; Evan T. Keller

Prostate cancer (PCa) is frequently accompanied by osteosclerotic (i.e., excessive bone production) bone metastases. Although bone morphogenetic proteins (BMP) and Wnts are mediators of PCa-induced osteoblastic activity, the relation between them in PCa bone metastases is unknown. The goal of this study was to define this relationship. Wnt3a and Wnt5a administration or knockdown of DKK-1, a Wnt inhibitor, induced BMP-4 and 6 expression and promoter activation in PCa cells. DKK-1 blocked Wnt activation of the BMP promoters. Transfection of C4-2B cells with axin, an inhibitor of canonical Wnt signaling, blocked Wnt3a but not Wnt5a induction of the BMP promoters. In contrast, Jnk inhibitor I blocked Wnt5a but not Wnt3a induction of the BMP promoters. Wnt3a, Wnt5a, and conditioned medium (CM) from C4-2B or LuCaP23.1 cells induced osteoblast differentiation in vitro. The addition of DKK-1 and Noggin, a BMP inhibitor, to CM diminished PCa CM-induced osteoblast differentiation in a synergistic fashion. However, pretreatment of PCa cells with DKK-1 before collecting CM blocked osteoblast differentiation, whereas pretreatment with Noggin only partially reduced osteoblast differentiation, and pretreatment with both DKK-1 and Noggin had no greater effect than pretreatment with DKK-1 alone. Additionally, knockdown of BMP expression in C4-2B cells inhibited Wnt-induced osteoblastic activity. These results show that PCa promotes osteoblast differentiation through canonical and noncanonical Wnt signaling pathways that stimulate both BMP-dependent and BMP-independent osteoblast differentiation. These results show a clear link between Wnts and BMPs in PCa-induced osteoblast differentiation and provide novel targets, including the noncanonical Wnt pathway, for therapy of PCa.


Cancer Research | 2005

Vascular Endothelial Growth Factor Contributes to Prostate Cancer–Mediated Osteoblastic Activity

Yasuhide Kitagawa; Jinlu Dai; Jian Zhang; Jill M. Keller; Jacques E. Nör; Zhi Yao; Evan T. Keller

Prostate cancer frequently metastasizes to bone resulting in the formation of osteoblastic metastases through unknown mechanisms. Vascular endothelial growth factor (VEGF) has been shown recently to promote osteoblast activity. Accordingly, we tested if VEGF contributes to the ability of prostate cancer to induce osteoblast activity. PC-3, LNCaP, and C4-2B prostate cancer cell lines expressed both VEGF-165 and VEGF-189 mRNA isoforms and VEGF protein. Prostate cancer cells expressed the mRNA for VEGF receptor (VEGFR) neuropilin-1 but not the VEGFRs Flt-1 or KDR. In contrast, mouse pre-osteoblastic cells (MC3T3-E1) expressed Flt-1 and neuropilin-1 mRNA but not KDR. PTK787, a VEGFR tyrosine kinase inhibitor, inhibited the proliferation of human microvascular endothelial cells but not prostate cancer proliferation in vitro. C4-2B conditioned medium induced osteoblast differentiation as measured by production of alkaline phosphatase and osteocalcin and mineralization of MC3T3-E1. PTK787 blocked the C4-2B conditioned medium-induced osteoblastic activity. VEGF directly induced alkaline phosphatase and osteocalcin but not mineralization of MC3T3-E1. These results suggest that VEGF induces initial differentiation of osteoblasts but requires other factors, present in C4-2B, to induce mineralization. To determine if VEGF influences the ability of prostate cancer to develop osteoblastic lesions, we injected C4-2B cells into the tibia of mice and, after the tumors grew for 6 weeks, administered PTK787 for 4 weeks. PTK787 decreased both intratibial tumor burden and C4-2B-induced osteoblastic activity as measured by bone mineral density and serum osteocalcin. These results show that VEGF contributes to prostate cancer-induced osteoblastic activity in vivo.


Clinical Cancer Research | 2014

Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions

Jinlu Dai; Honglai Zhang; Andreas Karatsinides; Jill M. Keller; Kenneth M. Kozloff; Dana T. Aftab; Frauke Schimmoller; Evan T. Keller

Purpose: Cabozantinib, an orally available multityrosine kinase inhibitor with activity against mesenchymal epithelial transition factor (MET) and VEGF receptor 2 (VEGFR2), induces resolution of bone scan lesions in men with castration-resistant prostate cancer bone metastases. The purpose of this study was to determine whether cabozantinib elicited a direct antitumor effect, an indirect effect through modulating bone, or both. Experimental Design: Using human prostate cancer xenograft studies in mice, we determined the impact of cabozantinib on tumor growth in soft tissue and bone. In vitro studies with cabozantinib were performed using (i) prostate cancer cell lines to evaluate its impact on cell growth, invasive ability, and MET and (ii) osteoblast cell lines to evaluate its impact on viability and differentiation and VEGFR2. Results: Cabozantinib inhibited progression of multiple prostate cancer cell lines (Ace-1, C4-2B, and LuCaP 35) in bone metastatic and soft tissue murine models of prostate cancer, except for PC-3 prostate cancer cells in which it inhibited only subcutaneous growth. Cabozantinib directly inhibited prostate cancer cell viability and induced apoptosis in vitro and in vivo and inhibited cell invasion in vitro. Cabozantinib had a dose-dependent biphasic effect on osteoblast activity and inhibitory effect on osteoclast production in vitro that was reflected in vivo. It blocked MET and VEGFR2 phosphorylation in prostate cancer cells and osteoblast-like cells, respectively. Conclusion: These data indicate that cabozantinib has direct antitumor activity, and that its ability to modulate osteoblast activity may contribute to its antitumor efficacy. Clin Cancer Res; 20(3); 617–30. ©2013 AACR.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2008

Heat stress-induced heat shock protein 70 expression is dependent on ERK activation in zebrafish (Danio rerio) cells

Jill M. Keller; June Escara-Wilke; Evan T. Keller

Heat shock response is a common event that occurs in many species. Despite its evolutionary conservation, comparative studies of heat shock response have been largely unexplored. In mammals, heat shock response decreases with age through unclear mechanisms. Understanding how the age-related decline in heat shock response occurs may provide information to understanding the biology of aging. We have previously shown that heat shock response similarly declines with age in zebrafish. However, signaling pathways that regulate the heat shock response in zebrafish are unknown. In mammals there is evidence that mitogen-activated protein kinases (MAPKs) of the ERK family alter Hsp70 transcription, serving as a potential regulator of the heat shock response. We explored if heat stress-induced Hsp70 expression is altered by activation of ERK in the zebrafish Pac2 fibroblast cell line as occurs in mammalian cells. Heat stress induced both Hsp70 mRNA expression and phosphorylation of both ERK1 and ERK2 (ERK1/2) in Pac2 cells. ERK inhibitors PD98059 and U0126 blocked both heat stress-induced and plated-derived growth factor (PDGF)-induced ERK1/2 phosphorylation, and also diminished heat-induced Hsp70 expression. Pac2 cell viability was not affected by either the ERK inhibitors or heat stress. These results demonstrate that induction of Hsp70 in response to heat stress is dependent on ERK activation in Pac2 cells. This suggests that the heat shock response in zebrafish utilizes a similar signaling pathway to that of mammals and that zebrafish are a good model for comparative studies of heat shock response.


Cancer Treatment Reviews | 2014

Recent advances in bone-targeted therapies of metastatic prostate cancer

Xiyun Deng; Guangchun He; Junwen Liu; Feijun Luo; Xiaoning Peng; Shigang Tang; Zhiyong Gao; Qinlu Lin; Jill M. Keller; Tao Yang; Evan T. Keller

Prostate cancer is one of the most common malignancies affecting men worldwide, with bone being the most common site of metastasis in patients that progress beyond organ confinement. Bone metastases are virtually incurable and result in significant disease morbidity and mortality. Bone provides a unique microenvironment whose local interactions with tumor cells offer novel targets for therapeutic interventions. Several attractive molecules or pathways have been identified as new potential therapeutic targets for bone metastases caused by metastatic castration-resistant prostate cancer. In this review, we present the recent advances in molecular targeted therapies for prostate cancer bone metastasis focusing on therapies that target the bone cells and the bone microenvironment. The therapies covered in this review include agents that inhibit bone resorption, agents that stimulate bone formation, and agents that target the bone matrix. Suggestions to devise more effective molecular targeted therapies are proposed. Hopefully, with better understanding of the biology of the disease and the development of more robust targeted therapies, the survival and quality of life of the affected individuals could be significantly improved.


The Journal of Urology | 2012

Histotripsy focal ablation of implanted prostate tumor in an ACE-1 canine cancer model.

George R. Schade; Jill M. Keller; Kim Ives; Xu Cheng; Thomas J. Rosol; Evan T. Keller; William W. Roberts

PURPOSE Histotripsy is a nonthermal ablative focused ultrasound technology with possible future applications for prostate cancer focal therapy. We used the ACE-1 prostate tumor model and evaluated the feasibility of treating prostate tumors with histotripsy. MATERIALS AND METHODS A total of 10 immunosuppressed (cyclosporine treated) canine subjects received transrectal ultrasound guided percutaneous intraprostatic injection of ACE-1 canine prostate cancer cells. Prostates were serially imaged with transrectal ultrasound to monitor tumor growth. Subjects were sham treated (3) or underwent transabdominal histotripsy of the prostate, which targeted implanted tumor and adjacent parenchyma using a 750 kHz piezoelectric ultrasound therapy transducer. Prostates were examined histologically to confirm tumor and the histotripsy treatment effect. RESULTS ACE-1 tumors were visualized on transrectal ultrasound in all 10 subjects within 2 weeks of tumor injection. Lesions demonstrated growth in the prostatic capsule, glandular lobules, fibrous septa and periurethral stroma with significant desmoplastic reaction and areas of central necrosis on histology. Lymph node and/or pulmonary metastases developed in 4 subjects. Ultrasound tumor localization and initiation of cavitation during histotripsy therapy were feasible in all treated subjects. Histologically there was evidence of homogenization of tumor and prostatic parenchyma in all 4 acute subjects with necrosis and hemorrhage in the 3 chronic subjects. CONCLUSIONS This study shows the feasibility of histotripsy destruction of prostate tumors in a canine ACE-1 model. It suggests a potential role for histotripsy based focal therapy for prostate cancer. Further studies are needed to better characterize the effects of histotripsy on malignant tissues.


Clinical Cancer Research | 2015

Notch Pathway Inhibition Using PF-03084014, a γ-Secretase Inhibitor (GSI), Enhances the Antitumor Effect of Docetaxel in Prostate Cancer

Di Cui; Jinlu Dai; Jill M. Keller; Atsushi Mizokami; Shujie Xia; Evan T. Keller

Purpose: To investigate the efficacy and mechanisms of Notch signaling inhibition as an adjuvant to docetaxel in castration-resistant prostate cancer (CRPC) using a γ-secretase inhibitor (GSI), PF-03084014. Experimental Design: The effect of PF-03084014 on response to docetaxel was evaluated in docetaxel-sensitive and docetaxel-resistant CRPC cell lines in vitro and in murine models. Both soft tissue and bone sites were evaluated in vivo. Impacts on cell proliferation, apoptosis, cancer stem cells, and angiogenesis were evaluated. Results: The combination of PF-03084014 plus docetaxel reduced both docetaxel-sensitive and docetaxel-resistant CRPC tumor growth in soft tissue and bone greater than either agent alone. Antitumor activity was associated with PF-03084014–induced inhibition of Notch pathway signaling; decreased survival signals (cyclin E; MEK/ERK, PI3K/AKT, EGFR and NF-κB pathway; BCL-2, BCL-XL); increased apoptotic signals (BAK, BAX; cleaved caspase-3); reduced microvessel density; reduced epithelial–mesenchymal transition; and reduced cancer stem–like cells in the tumor. Conclusions: These results reveal that PF-03084014 enhances docetaxel-mediated tumor response and provides a rationale to explore GSIs as adjunct therapy in conjunction with docetaxel for men with CRPC. Clin Cancer Res; 21(20); 4619–29. ©2015 AACR. See related commentary by Zhang and Armstrong, p. 4505


The Prostate | 2013

A novel canine model for prostate cancer

Jill M. Keller; George R. Schade; Kimberly Ives; Xu Cheng; Thomas J. Rosol; Morand Piert; Javed Siddiqui; William W. Roberts; Evan T. Keller

No existing animal model fully recapitulates all features of human prostate cancer. The dog is the only large mammal, besides humans, that commonly develops spontaneous prostate cancer. Canine prostate cancer features many similarities with its human counterpart. We sought to develop a canine model of prostate cancer that would more fully represent the features of human prostate cancer than existing models.


Molecular Cancer Research | 2013

Activation of the Wnt Pathway through AR79, a GSK3β Inhibitor, Promotes Prostate Cancer Growth in Soft Tissue and Bone

Yuan Jiang; Jinlu Dai; Honglai Zhang; Joe L. Sottnik; Jill M. Keller; Katherine J. Escott; Hitesh Sanganee; Zhi Yao; Laurie K. McCauley; Evan T. Keller

Due to its bone anabolic activity, methods to increase Wnt activity, such as inhibitors of dickkopf-1 and sclerostin, are being clinically explored. Glycogen synthase kinase (GSK3β) inhibits Wnt signaling by inducing β-catenin degradation, and a GSK3β inhibitor, AR79, is being evaluated as an osteoanabolic agent. However, Wnt activation has the potential to promote tumor growth; therefore, the goal of this study was to determine if AR79 has an impact on the progression of prostate cancer. Prostate cancer tumors were established in subcutaneous and bone sites of mice followed by AR79 administration, and tumor growth, β-catenin activation, proliferation, and apoptosis were assessed. Additionally, prostate cancer and osteoblast cell lines were treated with AR79, and β-catenin status, proliferation (with β-catenin knockdown in some cases), and proportion of ALDH+CD133+ stem-like cells were determined. AR79 promoted prostate cancer tumor growth, decreased phospho-β-catenin, increased total and nuclear β-catenin, and increased tumor-induced bone remodeling. Additionally, AR79 treatment decreased caspase-3 and increased Ki67 expression in tumors and increased bone formation in normal mouse tibiae. Similarly, AR79 inhibited β-catenin phosphorylation, increased nuclear β-catenin accumulation in prostate cancer and osteoblast cell lines, and increased proliferation of prostate cancer cells in vitro through β-catenin. Furthermore, AR79 increased the ALDH+CD133+ cancer stem cell–like proportion of the prostate cancer cell lines. In conclusion, AR79, while being bone anabolic, promotes prostate cancer cell growth through Wnt pathway activation. Implications: These data suggest that clinical application of pharmaceuticals that promote Wnt pathway activation should be used with caution as they may enhance tumor growth. Mol Cancer Res; 11(12); 1597–610. ©2013 AACR.

Collaboration


Dive into the Jill M. Keller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinlu Dai

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Jian Zhang

Guangxi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi Yao

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Lu

Guangxi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge