Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill M. Weimer is active.

Publication


Featured researches published by Jill M. Weimer.


Journal of Neuroscience Research | 2005

CLN3, the protein associated with batten disease: structure, function and localization.

Seasson N. Phillips; Jared W. Benedict; Jill M. Weimer; David A. Pearce

Batten disease, an inherited neurodegenerative storage disease affecting children, results from the autosomal recessive inheritance of mutations in Cln3. The function of the CLN3 protein remains unknown. A key to understanding the pathology of this devastating disease will be to elucidate the function of CLN3 at the cellular level. CLN3 has proven difficult to study as it is predicted to be a membrane protein expressed at relatively low levels. This article is a critical review of various approaches used in examining the structure, trafficking, and localization of CLN3. We conclude that CLN3 is likely resident in the lysosomal/endosomal membrane. Different groups have postulated conflicting orientations for CLN3 within this membrane. In addition, CLN3 undergoes several posttranslational modifications and is trafficked through the endoplasmic reticulum and Golgi. Recent evidence also suggests that CLN3 traffics via the plasma membrane. Although the function of this protein remains elusive, it is apparent that genetic alterations in Cln3 may have a direct affect on lysosomal function.


Neuromolecular Medicine | 2002

The neuronal ceroid lipofuscinoses

Jill M. Weimer; Elizabeth Kriscenski-Perry; Yasser Elshatory; David A. Pearce

The neuronal ceroid-lipofuscinoses (NCL) are the most common group of progressive neurodegenerative diseases in children, with an incidence as high as one in 12,500 live births. The main features of this disease are failure of psychomotor development, impaired vision, seizures, and premature death. Many biochemical and physiological studies have been initiated to determine the cellular defect underlying the disease, although only a few traits have been truly associated with the disorders. One of the paradox’s of the NCL-diseases is the characteristic accumulation of autofluorescent hydrophobic material in the lysosomes of neurons and other cell types. However, the accumulation of this lysosomal storage material, which no doubt contributes to the neurologic disease, does not apparently lead to disease outside the CNS, and how these cellular alterations relate to the neurodegeneration in NCLs is unknown. Mutations have been identified in six distinct genes/proteins, namely CLN1, which encodes PPT1, a protein thiolesterase; CLN2, which encodes TPP1, a serine protease; and CLN3, CLN5, CLN6, and CLN8, which encode novel transmembrane proteins. Mutation in any one of these CLN-proteins results in a distinct type of NCL-disease. However, there are many shared similarities in the pathology of these diseases. The most obvious connection between PPT1, TPP1, CLN3, CLN5, CLN6, and CLN8 is their subcellular localization. To date, three of the four proteins whose subcellular localization has been confirmed, namely PPT1, TPP1, and CLN3, reside in the lysosome. We review the function of the CLN-proteins and discuss the possibility that a disruption in a common biological process leads to an NCL-disease.


Brain Research | 2009

Cerebellar defects in a mouse model of juvenile neuronal ceroid lipofuscinosis.

Jill M. Weimer; Jared W. Benedict; Amanda L. Getty; Charlie C. Pontikis; Ming Lim; Jonathan D. Cooper; David A. Pearce

Juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, is a neurodegenerative disease resulting from a mutation in CLN3, which presents clinically with visual deterioration, seizures, motor impairments, cognitive decline, hallucinations, loss of circadian rhythm, and premature death in the late-twenties to early-thirties. Using a Cln3 null (Cln3(-/-)) mouse, we report here several deficits in the cerebellum in the absence of Cln3, including cell loss and early onset motor deficits. Surprisingly, early onset glial activation and selective neuronal loss within the mature fastigial pathway of the deep cerebellar nuclei (DCN), a region critical for balance and coordination, are seen in many regions of the Cln3(-/-) cerebellum. Additionally, there is a loss of Purkinje cells (PC) in regions of robust Bergmann glia activation in Cln3(-/-) mice and human JNCL post-mortem cerebellum. Moreover, the Cln3(-/-) cerebellum had a mis-regulation in granule cell proliferation and maintenance of PC dendritic arborization and spine density. Overall, this study defines a novel multi-faceted, early-onset cerebellar disruption in the Cln3 null brain, including glial activation, cell loss, and aberrant cell proliferation and differentiation. These early alterations in the maturation of the cerebellum could underlie some of the motor deficits and pathological changes seen in JNCL patients.


Orphanet Journal of Rare Diseases | 2016

Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis.

Ryan D. Geraets; Seung yon Koh; Michelle L. Hastings; Tammy Kielian; David A. Pearce; Jill M. Weimer

The Neuronal Ceroid Lipofuscinoses (NCLs) are a family of autosomal recessive neurodegenerative disorders that annually affect 1:100,000 live births worldwide. This family of diseases results from mutations in one of 14 different genes that share common clinical and pathological etiologies. Clinically, the diseases are subcategorized into infantile, late-infantile, juvenile and adult forms based on their age of onset. Though the disease phenotypes may vary in their age and order of presentation, all typically include progressive visual deterioration and blindness, cognitive impairment, motor deficits and seizures. Pathological hallmarks of NCLs include the accumulation of storage material or ceroid in the lysosome, progressive neuronal degeneration and massive glial activation. Advances have been made in genetic diagnosis and counseling for families. However, comprehensive treatment programs that delay or halt disease progression have been elusive. Current disease management is primarily targeted at controlling the symptoms rather than “curing” the disease. Recognizing the growing need for transparency and synergistic efforts to move the field forward, this review will provide an overview of the therapeutic approaches currently being pursued in preclinical and clinical trials to treat different forms of NCL as well as provide insight to novel therapeutic approaches in development for the NCLs.


Brain Research | 2007

Alterations in striatal dopamine catabolism precede loss of substantia nigra neurons in a mouse model of juvenile neuronal ceroid lipofuscinosis.

Jill M. Weimer; Jared W. Benedict; Yasser Elshatory; Douglas W. Short; Denia Ramirez-Montealegre; Deborah A. Ryan; Noreen A. Alexander; Howard J. Federoff; Jonathan D. Cooper; David A. Pearce

Batten disease, or juvenile neuronal ceroid lipofuscinosis (JNCL), results from mutations in the CLN3 gene. This disorder presents clinically around the age of 5 years with visual deficits progressing to include seizures, cognitive impairment, motor deterioration, hallucinations, and premature death by the third to fourth decade of life. The motor deficits include coordination and gait abnormalities, myoclonic jerks, inability to initiate movements, and spasticity. Previous work from our laboratory has identified an early reduction in catechol-O-methyltransferase (COMT), an enzyme responsible for the efficient degradation of dopamine. Alterations in the kinetics of dopamine metabolism could cause the accumulation of undegraded or unsequestered dopamine leading to the formation of toxic dopamine intermediates. We report an imbalance in the catabolism of dopamine in 3 month Cln3(-/-) mice persisting through 9 months of age that may be causal to oxidative damage within the striatum at 9 months of age. Combined with the previously reported inflammatory changes and loss of post-synaptic D1alpha receptors, this could facilitate cell loss in striatal projection regions and underlie a general locomotion deficit that becomes apparent at 12 months of age in Cln3(-/-) mice. This study provides evidence for early changes in the kinetics of COMT in the Cln3(-/-) mouse striatum, affecting the turnover of dopamine, likely leading to neuron loss and motor deficits. These data provide novel insights into the basis of motor deficits in JNCL and how alterations in dopamine catabolism may result in oxidative damage and localized neuronal loss in this disorder.


Human Molecular Genetics | 2015

A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease

Rosanna Beraldi; Chun-Hung Chan; Christopher S. Rogers; Attila Kovacs; David K. Meyerholz; Constantin Trantzas; Allyn M. Lambertz; Benjamin W. Darbro; Krystal Weber; Katherine M. White; Richard Van Rheeden; Michael C. Kruer; Brian A. Dacken; Xiao-Jun Wang; Bryan T. Davis; Judy A. Rohret; Jason T. Struzynski; Frank A. Rohret; Jill M. Weimer; David A. Pearce

Ataxia telangiectasia (AT) is a progressive multisystem disorder caused by mutations in the AT-mutated (ATM) gene. AT is a neurodegenerative disease primarily characterized by cerebellar degeneration in children leading to motor impairment. The disease progresses with other clinical manifestations including oculocutaneous telangiectasia, immune disorders, increased susceptibly to cancer and respiratory infections. Although genetic investigations and physiological models have established the linkage of ATM with AT onset, the mechanisms linking ATM to neurodegeneration remain undetermined, hindering therapeutic development. Several murine models of AT have been successfully generated showing some of the clinical manifestations of the disease, however they do not fully recapitulate the hallmark neurological phenotype, thus highlighting the need for a more suitable animal model. We engineered a novel porcine model of AT to better phenocopy the disease and bridge the gap between human and current animal models. The initial characterization of AT pigs revealed early cerebellar lesions including loss of Purkinje cells (PCs) and altered cytoarchitecture suggesting a developmental etiology for AT and could advocate for early therapies for AT patients. In addition, similar to patients, AT pigs show growth retardation and develop motor deficit phenotypes. By using the porcine system to model human AT, we established the first animal model showing PC loss and motor features of the human disease. The novel AT pig provides new opportunities to unmask functions and roles of ATM in AT disease and in physiological conditions.


Stem Cells Translational Medicine | 2017

Concise Review: Fat and Furious: Harnessing the Full Potential of Adipose-Derived Stromal Vascular Fraction

Jordan A. Dykstra; Tiffany Facile; Ryan J. Patrick; Kevin R. Francis; Samuel Milanovich; Jill M. Weimer; Daniel J. Kota

Due to their capacity to self‐renew, proliferate and generate multi‐lineage cells, adult‐derived stem cells offer great potential for use in regenerative therapies to stop and/or reverse degenerative diseases such as diabetes, heart failure, Alzheimers disease and others. However, these subsets of cells can be isolated from different niches, each with differing potential for therapeutic applications. The stromal vascular fraction (SVF), a stem cell enriched and adipose‐derived cell population, has garnered interest as a therapeutic in regenerative medicine due to its ability to secrete paracrine factors that accelerate endogenous repair, ease of accessibility and lack of identified major adverse effects. Thus, one can easily understand the rush to employ adipose‐derived SVF to treat human disease. Perhaps faster than any other cell preparation, SVF is making its way to clinics worldwide, while critical preclinical research needed to establish SVF safety, efficacy and optimal, standardized clinical procedures are underway. Here, we will provide an overview of the current knowledge driving this phenomenon, its regulatory issues and existing studies, and propose potential unmapped applications. Stem Cells Translational Medicine 2017;6:1096–1108


Frontiers in Cellular Neuroscience | 2015

X MARCKS the spot: myristoylated alanine-rich C kinase substrate in neuronal function and disease.

Jon J. Brudvig; Jill M. Weimer

Intracellular protein-protein interactions are dynamic events requiring tightly regulated spatial and temporal checkpoints. But how are these spatial and temporal cues integrated to produce highly specific molecular response patterns? A helpful analogy to this process is that of a cellular map, one based on the fleeting localization and activity of various coordinating proteins that direct a wide array of interactions between key molecules. One such protein, myristoylated alanine-rich C-kinase substrate (MARCKS) has recently emerged as an important component of this cellular map, governing a wide variety of protein interactions in every cell type within the brain. In addition to its well-documented interactions with the actin cytoskeleton, MARCKS has been found to interact with a number of other proteins involved in processes ranging from intracellular signaling to process outgrowth. Here, we will explore these diverse interactions and their role in an array of brain-specific functions that have important implications for many neurological conditions.


Aging Cell | 2015

MARCKS-dependent mucin clearance and lipid metabolism in ependymal cells are required for maintenance of forebrain homeostasis during aging

Nagendran Muthusamy; Laura Sommerville; Adam J. Moeser; Deborah J. Stumpo; Kenneth B. Adler; Perry J. Blackshear; Jill M. Weimer; H. Troy Ghashghaei

Ependymal cells (ECs) form a barrier responsible for selective movement of fluids and molecules between the cerebrospinal fluid and the central nervous system. Here, we demonstrate that metabolic and barrier functions in ECs decline significantly during aging in mice. The longevity of these functions in part requires the expression of the myristoylated alanine‐rich protein kinase C substrate (MARCKS). Both the expression levels and subcellular localization of MARCKS in ECs are markedly transformed during aging. Conditional deletion of MARCKS in ECs induces intracellular accumulation of mucins, elevated oxidative stress, and lipid droplet buildup. These alterations are concomitant with precocious disruption of ependymal barrier function, which results in the elevation of reactive astrocytes, microglia, and macrophages in the interstitial brain tissue of young mutant mice. Interestingly, similar alterations are observed during normal aging in ECs and the forebrain interstitium. Our findings constitute a conceptually new paradigm in the potential role of ECs in the initiation of various conditions and diseases in the aging brain.


American Journal of Medical Genetics Part A | 2017

Nonsense pathogenic variants in exon 1 of PHOX2B lead to translational reinitiation in congenital central hypoventilation syndrome

Jacob T. Cain; Dae I. Kim; Megan Quast; Winnie G. Shivega; Ryan J. Patrick; Chuanpit Moser; Suzanne Reuter; Myrza R. Perez; Angela Myers; Jill M. Weimer; Kyle J. Roux; Megan Landsverk

Pathogenic variants in PHOX2B lead to congenital central hypoventilation syndrome (CCHS), a rare disorder of the nervous system characterized by autonomic dysregulation and hypoventilation typically presenting in the neonatal period, although a milder late‐onset (LO) presentation has been reported. More than 90% of cases are caused by polyalanine repeat mutations (PARMs) in the C‐terminus of the protein; however non‐polyalanine repeat mutations (NPARMs) have been reported. Most NPARMs are located in exon 3 of PHOX2B and result in a more severe clinical presentation including Hirschsprung disease (HSCR) and/or peripheral neuroblastic tumors (PNTs). A previously reported nonsense pathogenic variant in exon 1 of a patient with LO‐CCHS and no HSCR or PNTs leads to translational reinitiation at a downstream AUG codon producing an N‐terminally truncated protein. Here we report additional individuals with nonsense pathogenic variants in exon 1 of PHOX2B. In vitro analyses were used to determine if these and other reported nonsense variants in PHOX2B exon 1 produced N‐terminally truncated proteins. We found that all tested nonsense variants in PHOX2B exon 1 produced a truncated protein of the same size. This truncated protein localized to the nucleus and transactivated a target promoter. These data suggest that nonsense pathogenic variants in the first exon of PHOX2B likely escape nonsense mediated decay (NMD) and produce N‐terminally truncated proteins functionally distinct from those produced by the more common PARMs.

Collaboration


Dive into the Jill M. Weimer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David K. Meyerholz

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Attila Kovacs

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan D. Cooper

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan D. Geraets

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge