Jill T. Anderson
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jill T. Anderson.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Jill T. Anderson; David W. Inouye; Amy M. McKinney; Robert I. Colautti; Thomas Mitchell-Olds
Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010–2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change.
Trends in Genetics | 2011
Jill T. Anderson; John H. Willis; Thomas Mitchell-Olds
Plants provide unique opportunities to study the mechanistic basis and evolutionary processes of adaptation to diverse environmental conditions. Complementary laboratory and field experiments are important for testing hypotheses reflecting long-term ecological and evolutionary history. For example, these approaches can infer whether local adaptation results from genetic tradeoffs (antagonistic pleiotropy), where native alleles are best adapted to local conditions, or if local adaptation is caused by conditional neutrality at many loci, where alleles show fitness differences in one environment, but not in a contrasting environment. Ecological genetics in natural populations of perennial or outcrossing plants can also differ substantially from model systems. In this review of the evolutionary genetics of plant adaptation, we emphasize the importance of field studies for understanding the evolutionary dynamics of model and nonmodel systems, highlight a key life history trait (flowering time) and discuss emerging conservation issues.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Christopher N. Topp; Anjali S. Iyer-Pascuzzi; Jill T. Anderson; Cheng-Ruei Lee; Paul R. Zurek; Olga Symonova; Ying Zheng; Alexander Bucksch; Yuriy Mileyko; Taras Galkovskyi; Brad T. Moore; John Harer; Herbert Edelsbrunner; Thomas Mitchell-Olds; Joshua S. Weitz; Philip N. Benfey
Significance Improving the efficiency of root systems should result in crop varieties with better yields, requiring fewer chemical inputs, and that can grow in harsher environments. Little is known about the genetic factors that condition root growth because of roots’ complex shapes, the opacity of soil, and environmental influences. We designed a 3D root imaging and analysis platform and used it to identify regions of the rice genome that control several different aspects of root system growth. The results of this study should inform future efforts to enhance root architecture for agricultural benefit. Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala × Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium. From these data we identified 89 quantitative trait loci, some of which correspond to those found previously in soil-grown plants, and provide evidence for genetic tradeoffs in root growth allocations, such as between the extent and thoroughness of exploration. We also developed a multivariate method for generating and mapping central root architecture phenotypes and used it to identify five major quantitative trait loci (r2 = 24–37%), two of which were not identified by our univariate analysis. Our imaging and analytical platform provides a means to identify genes with high potential for improving root traits and agronomic qualities of crops.
Molecular Ecology | 2013
Jill T. Anderson; Cheng-Ruei Lee; Catherine A. Rushworth; Robert I. Colautti; Thomas Mitchell-Olds
Divergent natural selection promotes local adaptation and can lead to reproductive isolation of populations in contrasting environments; however, the genetic basis of local adaptation remains largely unresolved in natural populations. Local adaptation might result from antagonistic pleiotropy, where alternate alleles are favoured in distinct habitats, and polymorphism is maintained by selection. Alternatively, under conditional neutrality some alleles may be favoured in one environment but neutral at other locations. Antagonistic pleiotropy maintains genetic variation across the landscape; however, there is a systematic bias against discovery of antagonistic pleiotropy because the fitness benefits of local alleles need to be significant in at least two environments. Here, we develop a generally applicable method to investigate polygenic local adaptation and identify loci that are the targets of selection. This approach evaluates allele frequency changes after selection at loci across the genome to distinguish antagonistic pleiotropy from conditional neutrality and deleterious variation. We investigate local adaptation at the qualitative trait loci (QTL) level in field experiments, in which we expose 177 F6 recombinant inbred lines and parental lines of Boechera stricta (Brassicaceae) to their parental environments over two seasons. We demonstrate polygenic selection for native alleles in both environments, with 2.8% of the genome exhibiting antagonistic pleiotropy and 8% displaying conditional neutrality. Our study strongly supports antagonistic pleiotropy at one large‐effect flowering phenology QTL (nFT): native homozygotes had significantly greater probabilities of flowering than foreign homozygotes in both parental environments. Such large‐scale field studies are essential to elucidate the genetic basis of adaptation in natural populations.
Science | 2012
Kasavajhala V. S. K. Prasad; Bao-Hua Song; Carrie F. Olson-Manning; Jill T. Anderson; Cheng-Ruei Lee; M. E. Schranz; Aaron J. Windsor; Maria J. Clauss; Antonio J. Manzaneda; I. Naqvi; Michael Reichelt; Jonathan Gershenzon; Sanjeewa G. Rupasinghe; Mary A. Schuler; Thomas Mitchell-Olds
Natural Selection at Work Catching the evolution of a novel function and determining its selective parameters in nature remains an extremely difficult task. Prasad et al. (p. 1081) have undertaken this quest documenting the molecular basis of a natural allelic polymorphism and its effects on herbivory and survival in the Arabidopsis relative, Boechera stricta, living in the Rocky Mountains. Positive selection for a mutation that enhances resistance to herbivory in the model plant Boechera is described. Identification of the causal genes that control complex trait variation remains challenging, limiting our appreciation of the evolutionary processes that influence polymorphisms in nature. We cloned a quantitative trait locus that controls plant defensive chemistry, damage by insect herbivores, survival, and reproduction in the natural environments where this polymorphism evolved. These ecological effects are driven by duplications in the BCMA (branched-chain methionine allocation) loci controlling this variation and by two selectively favored amino acid changes in the glucosinolate-biosynthetic cytochrome P450 proteins that they encode. These changes cause a gain of novel enzyme function, modulated by allelic differences in catalytic rate and gene copy number. Ecological interactions in diverse environments likely contribute to the widespread polymorphism of this biochemical function.
Evolution | 2011
Jill T. Anderson; Cheng-Ruei Lee; Thomas Mitchell-Olds
Plants must precisely time flowering to capitalize on favorable conditions. Although we know a great deal about the genetic basis of flowering phenology in model species under controlled conditions, the genetic architecture of this ecologically important trait is poorly understood in nonmodel organisms. Here, we evaluated the transition from vegetative growth to flowering in Boechera stricta, a perennial relative of Arabidopsis thaliana. We examined flowering time QTLs using 7920 recombinant inbred individuals, across seven laboratory and field environments differing in vernalization, temperature, and photoperiod. Genetic and environmental factors strongly influenced the transition to reproduction. We found directional selection for earlier flowering in the field. In the growth chamber experiment, longer winters accelerated flowering, whereas elevated ambient temperatures delayed flowering. Our analyses identified one large effect QTL (nFT), which influenced flowering time in the laboratory and the probability of flowering in the field. In Montana, homozygotes for the native allele at nFT showed a selective advantage of 6.6%. Nevertheless, we found relatively low correlations between flowering times in the field and the growth chambers. Additionally, we detected flowering‐related QTLs in the field that were absent across the full range of laboratory conditions, thus emphasizing the need to conduct experiments in natural environments.
Proceedings of the Royal Society of London B: Biological Sciences | 2011
Jill T. Anderson; Tim Nuttle; Joe Saldaña Rojas; Thomas H. Pendergast; Alexander S. Flecker
Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337–552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700–2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants.
Heredity | 2014
Jill T. Anderson; Maggie R. Wagner; Catherine A. Rushworth; Kasavajhala V. S. K. Prasad; Thomas Mitchell-Olds
Species inhabit complex environments and respond to selection imposed by numerous abiotic and biotic conditions that vary in both space and time. Environmental heterogeneity strongly influences trait evolution and patterns of adaptive population differentiation. For example, heterogeneity can favor local adaptation, or can promote the evolution of plastic genotypes that alter their phenotypes based on the conditions they encounter. Different abiotic and biotic agents of selection can act synergistically to either accelerate or constrain trait evolution. The environmental context has profound effects on quantitative genetic parameters. For instance, heritabilities measured in controlled conditions often exceed those measured in the field; thus, laboratory experiments could overestimate the potential for a population to respond to selection. Nevertheless, most studies of the genetic basis of ecologically relevant traits are conducted in simplified laboratory environments, which do not reflect the complexity of nature. Here, we advocate for manipulative field experiments in the native ranges of plant species that differ in mating system, life-history strategy and growth form. Field studies are vital to evaluate the roles of disparate agents of selection, to elucidate the targets of selection and to develop a nuanced perspective on the evolution of quantitative traits. Quantitative genetics field studies will also shed light on the potential for natural populations to adapt to novel climates in highly fragmented landscapes. Drawing from our experience with the ecological model system Boechera (Brassicaceae), we discuss advancements possible through dedicated field studies, highlight future research directions and examine the challenges associated with field studies.
Plant Physiology | 2012
Jill T. Anderson; Anne Marie Panetta; Thomas Mitchell-Olds
Strategies that enable species to persist in changing environments have historically been divided into ecological (distributional shifts and phenotypic plasticity) and evolutionary (adaptation and gene flow). However, most species will likely need to rely on a combination of approaches to mitigate
Journal of Experimental Botany | 2013
Beth A. Krizek; Jill T. Anderson
Flowers exhibit amazing morphological diversity in many traits, including their size. In addition to interspecific flower size differences, many species maintain significant variation in flower size within and among populations. Flower size variation can contribute to reproductive isolation of species and thus has clear evolutionary consequences. In this review we integrate information on flower size variation from both evolutionary and developmental biology perspectives. We examine the role of flower size in the context of mating system evolution. In addition, we describe what is currently known about the genetic basis of flower size based on quantitative trait locus (QTL) mapping in several different plant species and molecular genetic studies in model plants, primarily Arabidopsis thaliana. Work in Arabidopsis suggests that many independent pathways regulate floral organ growth via effects on cell proliferation and/or cell expansion.