Jill Trewhella
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jill Trewhella.
Protein Science | 2010
David A. Jacques; Jill Trewhella
The last decade has seen a dramatic increase in the use of small‐angle scattering for the study of biological macromolecules in solution. The drive for more complete structural characterization of proteins and their interactions, coupled with the increasing availability of instrumentation and easy‐to‐use software for data analysis and interpretation, is expanding the utility of the technique beyond the domain of the biophysicist and into the realm of the protein scientist. However, the absence of publication standards and the ease with which 3D models can be calculated against the inherently 1D scattering data means that an understanding of sample quality, data quality, and modeling assumptions is essential to have confidence in the results. This review is intended to provide a road map through the small‐angle scattering experiment, while also providing a set of guidelines for the critical evaluation of scattering data. Examples of current best practice are given that also demonstrate the power of the technique to advance our understanding of protein structure and function.
Journal of Applied Crystallography | 2008
Andrew E. Whitten; Shuzhi Cai; Jill Trewhella
Small-angle neutron scattering with contrast variation can fill important gaps in our understanding of biomolecular assemblies, providing constraints that can aid in the construction of molecular models and in subsequent model refinements. This paper describes the implementation of simple tools for analysing neutron contrast variation data, accessible via a user-friendly web-based interface (http://www.mmb.usyd.edu.au/NCVWeb/). There are three modules accessible from the website to analyse neutron contrast variation data from bimolecular complexes. The first module, Contrast, computes neutron contrasts of each component of the complex required by the other two modules; the second module, Rg, analyses the contrast dependence of the radii of gyration to yield information relating to the size and disposition of each component in the complex; and the third, Compost, decomposes the contrast variation series into composite scattering functions, which contain information regarding the shape of each component of the complex, and their orientation with respect to each other.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Andrew E. Whitten; Cy M. Jeffries; Samantha P. Harris; Jill Trewhella
Cardiac myosin-binding protein C (cMyBP-C) is an accessory protein of striated muscle sarcomeres that is vital for maintaining regular heart function. Its 4 N-terminal regulatory domains, C0-C1-m-C2 (C0C2), influence actin and myosin interactions, the basic contractile proteins of muscle. Using neutron contrast variation data, we have determined that C0C2 forms a repeating assembly with filamentous actin, where the C0 and C1 domains of C0C2 attach near the DNase I-binding loop and subdomain 1 of adjacent actin monomers. Direct interactions between the N terminus of cMyBP-C and actin thereby provide a mechanism to modulate the contractile cycle by affecting the regulatory state of the thin filament and its ability to interact with myosin.
Structure | 2015
Andrej Sali; Helen M. Berman; Torsten Schwede; Jill Trewhella; Gerard J. Kleywegt; Stephen K. Burley; John L. Markley; Haruki Nakamura; Paul D. Adams; Alexandre M. J. J. Bonvin; Wah Chiu; Matteo Dal Peraro; Frank Di Maio; Thomas E. Ferrin; Kay Grünewald; Aleksandras Gutmanas; Richard Henderson; Gerhard Hummer; Kenji Iwasaki; Graham Johnson; Catherine L. Lawson; Jens Meiler; Marc A. Marti-Renom; Gaetano T. Montelione; Michael Nilges; Ruth Nussinov; Ardan Patwardhan; Juri Rappsilber; Randy J. Read; Helen R. Saibil
Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models?
Journal of Molecular Biology | 2008
Michael D. W. Griffin; R.J. Dobson; F. Grant Pearce; Laurence Antonio; Andrew E. Whitten; Chu K. Liew; Joel P. Mackay; Jill Trewhella; Geoffrey B. Jameson; Matthew A. Perugini; Juliet A. Gerrard
Dihydrodipicolinate synthase (DHDPS) is an essential enzyme in (S)-lysine biosynthesis and an important antibiotic target. All X-ray crystal structures solved to date reveal a homotetrameric enzyme. In order to explore the role of this quaternary structure, dimeric variants of Escherichia coli DHDPS were engineered and their properties were compared to those of the wild-type tetrameric form. X-ray crystallography reveals that the active site is not disturbed when the quaternary structure is disrupted. However, the activity of the dimeric enzymes in solution is substantially reduced, and a tetrahedral adduct of a substrate analogue is observed to be trapped at the active site in the crystal form. Remarkably, heating the dimeric enzymes increases activity. We propose that the homotetrameric structure of DHDPS reduces dynamic fluctuations present in the dimeric forms and increases specificity for the first substrate, pyruvate. By restricting motion in a key catalytic motif, a competing, non-productive reaction with a substrate analogue is avoided. Small-angle X-ray scattering and mutagenesis data, together with a B-factor analysis of the crystal structures, support this hypothesis and lead to the suggestion that in at least some cases, the evolution of quaternary enzyme structures might serve to optimise the dynamic properties of the protein subunits.
Biophysical Journal | 2001
Dominico Vigil; Stephen C. Gallagher; Jill Trewhella; Angel E. Garcia
Molecular dynamics studies of the N-domain (amino acids 1-77; CaM(1-77)) of Ca2+-loaded calmodulin (CaM) show that a solvent exposed hydrophobic cleft in the crystal structure of CaM exhibits transitions from an exposed (open) to a buried (closed) state over a time scale of nanoseconds. As a consequence of burying the hydrophobic cleft, the R(g) of the protein is reduced by 1.5 A. Based on this prediction, x-ray scattering experiments were conducted on this domain over a range of concentrations. Models built from the scattering data show that the R(g) and general shape is consistent with the simulation studies of CaM(1-77). Based on these observations we postulate a model in which the conformation of CaM fluctuates between two different states that expose and bury this hydrophobic cleft. In aqueous solution the closed state dominates the population, while in the presence of peptides, the open state dominates. This inherent flexibility of CaM may be the key to its versatility in recognizing structurally distinct peptide sequences. This model conflicts with the currently accepted hypothesis based on observations in the crystal structure, where upon Ca2+ binding the hydrophobic cleft is exposed to solvent. We postulate that crystal packing forces stabilize the protein conformation toward the open configuration.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Michael E. Wall; Sharron H. Francis; Jackie D. Corbin; Kennard Grimes; Robyn Richie-Jannetta; Jun Kotera; Brian MacDonald; Rowena R. Gibson; Jill Trewhella
Using small-angle x-ray scattering, we have observed the cGMP-induced elongation of an active, cGMP-dependent, monomeric deletion mutant of cGMP-dependent protein kinase (Δ1–52PKG-Iβ). On saturation with cGMP, the radius of gyration of Δ1–52PKG-Iβ increases from 29.4 ± 0.1 Å to 40.1 ± 0.7 Å, and the maximum linear dimension increases from 90 Å ± 10% to 130 Å ± 10%. The elongation is due to a change in the interaction between structured regulatory (R) and catalytic (C) domains. A model of cGMP binding to Δ1–52PKG-Iβ indicates that elongation of Δ1–52PKG-Iβ requires binding of cGMP to the low-affinity binding site of the R domain. A comparison with cAMP-dependent protein kinase suggests that both elongation and activation require cGMP binding to both sites; cGMP binding to the low-affinity site therefore seems to be a necessary, but not sufficient, condition for both elongation and activation of Δ1–52PKG-Iβ. We also predict that there is little or no cooperativity in cGMP binding to the two sites of Δ1–52PKG-Iβ under the conditions used here. Results obtained by using the Δ1–52PKG-Iβ monomer indicate that a previously observed elongation of PKG-Iα is consistent with a pure change in the interaction between the R domain and the C domain, without alteration of the dimerization interaction. This study has revealed important features of molecular mechanisms in the biochemical network describing PKG-Iβ activation by cGMP, yielding new insight into ligand activation of cyclic nucleotide-dependent protein kinases, a class of regulatory proteins that is key to many cellular processes.
Journal of Biological Chemistry | 1998
Jinkui Zhao; Elaine Hoye; Sharon Boylan; Donal A. Walsh; Jill Trewhella
Chimeric molecules of the cAMP-dependent protein kinase (PKA) holoenzyme (R2C2) and of a Δ1–91RC dimer were reconstituted using deuterated regulatory (R) and protiated catalytic (C) subunits. Small angle scattering with contrast variation has revealed the shapes and dispositions of R and C in the reconstituted complexes, leading to low resolution models for both forms. The crystal structures of C and a truncation mutant of R fit well within the molecular boundaries of the RC dimer model. The area of interaction between R and C is small, seemingly poised for dissociation upon a conformational transition within R induced by cAMP binding. Within the RC dimer, C has a “closed” conformation similar to that seen for C with a bound pseudosubstrate peptide. The model for the PKA holoenzyme has an extended dumbbell shape. The interconnecting bar is formed from the dimerization domains of the R subunits, arranged in an antiparallel configuration, while each lobe contains the cAMP-binding domains of one R interacting with one C. Our studies suggest that the PKA structure may be flexible via a hinge movement of each dumbbell lobe with respect to the dimerization domain. Sequence comparisons suggest that this hinge might be a property of the RII PKA isoforms.
Biophysical Journal | 2011
Daniel Johansen; Cy M. Jeffries; Boualem Hammouda; Jill Trewhella; David P. Goldenberg
Small-angle neutron scattering was used to examine the effects of molecular crowding on an intrinsically disordered protein, the N protein of bacteriophage λ, in the presence of high concentrations of a small globular protein, bovine pancreatic trypsin inhibitor (BPTI). The N protein was labeled with deuterium, and the D(2)O concentration of the solvent was adjusted to eliminate the scattering contrast between the solvent and unlabeled BPTI, leaving only the scattering signal from the unfolded protein. The scattering profile observed in the absence of BPTI closely matched that predicted for an ensemble of random conformations. With BPTI added to a concentration of 65 mg/mL, there was a clear change in the scattering profile representing an increase in the mass fractal dimension of the unfolded protein, from 1.7 to 1.9, as expected if crowding favors more compact conformations. The crowding protein also inhibited aggregation of the unfolded protein. At 130 mg/mL BPTI, however, the fractal dimension was not significantly different from that measured at the lower concentration, contrary to the predictions of models that treat the unfolded conformations as convex particles. These results are reminiscent of the behavior of polymers in concentrated melts, suggesting that these synthetic mixtures may provide useful insights into the properties of unfolded proteins under crowding conditions.
Current Opinion in Structural Biology | 1997
Jill Trewhella
Recent advances in neutron and X-ray sources and instrumentation, new and improved scattering techniques, and molecular biology techniques, which have permitted facile preparation of samples, have each led to new opportunities in using small-angle scattering to study the conformations and interactions of biological macromolecules in solution as a function of their properties. For example, new instrumentation on synchrotron sources has facilitated time-resolved studies that yield insights into protein folding. More powerful neutron sources, combined with molecular biology tools that isotopically label samples, have facilitated studies of biomolecular interactions, including those involving active enzymes.