Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill V. Hunter is active.

Publication


Featured researches published by Jill V. Hunter.


Neurology | 2008

Diffusion tensor imaging of acute mild traumatic brain injury in adolescents

Elisabeth A. Wilde; Stephen R. McCauley; Jill V. Hunter; Erin D. Bigler; Z. Chu; Zhiyue J. Wang; Gerri Hanten; Maya Troyanskaya; Ragini Yallampalli; Xiaoqi Li; Jonathan M. Chia; Harvey S. Levin

Background: Despite normal CT imaging and neurologic functioning, many individuals report postconcussion symptoms following mild traumatic brain injury (MTBI). This dissociation has been enigmatic for clinicians and investigators. Methods: Diffusion tensor imaging tractography of the corpus callosum was performed in 10 adolescents (14 to 19 years of age) with MTBI 1 to 6 days postinjury with Glasgow Coma Scale score of 15 and negative CT, and 10 age- and gender-equivalent uninjured controls. Subjects were administered the Rivermead Post Concussion Symptoms Questionnaire and the Brief Symptom Inventory to assess self-reported cognitive, affective, and somatic symptoms. Results: The MTBI group demonstrated increased fractional anisotropy and decreased apparent diffusion coefficient and radial diffusivity, and more intense postconcussion symptoms and emotional distress compared to the control group. Increased fractional anisotropy and decreased radial diffusivity were correlated with severity of postconcussion symptoms in the MTBI group, but not in the control group. Conclusions: In adolescents with mild traumatic brain injury (MTBI) with Glasgow Coma Scale score of 15 and negative CT, diffusion tensor imaging (DTI) performed within 6 days postinjury showed increased fractional anisotropy and decreased diffusivity suggestive of cytotoxic edema. Advanced MRI-based DTI methods may enhance our understanding of the neuropathology of TBI, including MTBI. Additionally, DTI may prove more sensitive than conventional imaging methods in detecting subtle, but clinically meaningful, changes following MTBI and may be critical in refining MTBI diagnosis, prognosis, and management.


Pediatrics | 2004

Clinical Spectrum, Morbidity, and Mortality in 113 Pediatric Patients with Mitochondrial Disease

Fernando Scaglia; Jeffrey A. Towbin; William J. Craigen; John W. Belmont; Stephen R. Neish; Stephanie M. Ware; Jill V. Hunter; Susan D. Fernbach; Georgirene D. Vladutiu; Lee-Jun C. Wong; Hannes Vogel

Objectives. The aim of this study was to elucidate the frequency of major clinical manifestations in children with mitochondrial disease and establish their clinical course, prognosis, and rates of survival depending on their clinical features. Methods. We performed a retrospective review of the medical records of 400 patients who were referred for evaluation of mitochondrial disease. By use of the modified Walker criteria, only patients who were assigned a definite diagnosis were included in the study. Results. A total of 113 pediatric patients with mitochondrial disease were identified. A total of 102 (90%) patients underwent a muscle biopsy as part of the diagnostic workup. A significant respiratory chain (RC) defect, according to the diagnostic criteria, was found in 71% of the patients who were evaluated. In this cohort, complex I deficiency (32%) and combined complex I, III, and IV deficiencies (26%) were the most common causes of RC defects, followed by complex IV (19%), complex III (16%), and complex II deficiencies (7%). Pathogenic mitochondrial DNA abnormalities were found in 11.5% of the patients. A substantial fraction (40%) of patients with mitochondrial disorders exhibited cardiac disease, diagnosed by Doppler echocardiography; however, the majority (60%) of patients had predominant neuromuscular manifestations. No correlation between the type of RC defect and the clinical presentation was observed. Overall, the mean age at presentation was 40 months. However, the mean age at presentation was 33 months in the cardiac group and 44 months in the noncardiac group. Twenty-six (58%) patients in the cardiac group exhibited hypertrophic cardiomyopathy, 29% had dilated cardiomyopathy, and the remainder (13%) had left ventricular noncompaction. Patients with cardiomyopathy had an 18% survival rate at 16 years of age. Patients with neuromuscular features but no cardiomyopathy had a 95% survival at the same age. Conclusions. This study gives strong support to the view that in patients with RC defects, cardiomyopathy is more common than previously thought and tends to follow a different and more severe clinical course. Although with a greater frequency than previously reported, mitochondrial DNA mutations were found in a minority of patients, emphasizing that most mitochondrial disorders of childhood follow a Mendelian pattern of inheritance.


Neurology | 2008

CNS aquaporin-4 autoimmunity in children.

Andrew McKeon; Vanda A. Lennon; Timothy Lotze; S. Tenenbaum; Jayne Ness; Mary Rensel; Nancy L. Kuntz; J. P. Fryer; Henry A. Homburger; Jill V. Hunter; Brian G. Weinshenker; Karl N. Krecke; Claudia F. Lucchinetti; Sean J. Pittock

Background: In adult patients, autoantibodies targeting the water channel aquaporin-4 (AQP4) are a biomarker for a spectrum of CNS inflammatory demyelinating disorders with predilection for optic nerves and spinal cord (neuromyelitis optica [NMO]). Here we describe the neurologic, serologic, and radiographic findings associated with CNS AQP4 autoimmunity in childhood. Methods: A total of 88 consecutive seropositive children were identified through service evaluation for NMO-IgG. Sera of 75 were tested for coexisting autoantibodies. Clinical information was available for 58. Results: Forty-two patients (73%) were non-Caucasian, and 20 (34%) had African ethnicity. Median age at symptom onset was 12 years (range 4–18). Fifty-seven (98%) had attacks of either optic neuritis (n = 48; 83%) or transverse myelitis (n = 45; 78%), or both. Twenty-six (45%) had episodic cerebral symptoms (encephalopathy, ophthalmoparesis, ataxia, seizures, intractable vomiting, or hiccups). Thirty-eight (68%) had brain MRI abnormalities, predominantly involving periventricular areas (in descending order of frequency): the medulla, supratentorial and infratentorial white matter, midbrain, cerebellum, thalamus, and hypothalamus. Additional autoantibodies were detected in 57 of 75 patients (76%), and 16 of 38 (42%) had a coexisting autoimmune disorder recorded (systemic lupus erythematosus, Sjögren syndrome, juvenile rheumatoid arthritis, Graves disease). Attacks were recurrent in 54 patients (93%; median follow-up, 12 months). Forty-three of 48 patients (90%) had residual disability: 26 (54%) visual impairment and 21 (44%) motor deficits (median Expanded Disability Status Scale 4.0 at 12 months). Conclusions: Aquaporin-4 autoimmunity is a distinctive recurrent and widespread inflammatory CNS disease in children.


The Journal of Thoracic and Cardiovascular Surgery | 2010

Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring

Dean B. Andropoulos; Jill V. Hunter; David P. Nelson; Stephen A. Stayer; Ann R. Stark; E. Dean McKenzie; Jeffrey S. Heinle; Daniel E. Graves; Charles D. Fraser

BACKGROUND New intraparenchymal brain injury on magnetic resonance imaging is observed in 36% to 73% of neonates after cardiac surgery with cardiopulmonary bypass. Brain immaturity in this population is common. We performed brain magnetic resonance imaging before and after neonatal cardiac surgery, using a high-flow cardiopulmonary bypass protocol, hypothesizing that brain injury on magnetic resonance imaging would be associated with brain immaturity. METHODS Cardiopulmonary bypass protocol included 150 mL . kg(-1) . min(-1) flows, pH stat management, hematocrit > 30%, and high-flow antegrade cerebral perfusion. Regional brain oxygen saturation was monitored, with a treatment protocol for regional brain oxygen saturation < 50%. Brain magnetic resonance imaging, consisting of T1-, T2-, and diffusion-weighted imaging, and magnetic resonance spectroscopy were performed preoperatively, 7 days postoperatively, and at age 3 to 6 months. RESULTS Twenty-four of 67 patients (36%) had new postoperative white matter injury, infarction, or hemorrhage, and 16% had new white matter injury. Associations with preoperative brain injury included low brain maturity score (P = .002). Postoperative white matter injury was associated with single-ventricle diagnosis (P = .02), preoperative white matter injury (P < .001), and low brain maturity score (P = .05). Low brain maturity score was also associated with more severe postoperative brain injury (P = .01). Forty-five patients had a third scan, with a 27% incidence of new minor lesions, but 58% of previous lesions had partially or completely resolved. CONCLUSIONS We observed a significant incidence of both pre- and postoperative magnetic resonance imaging abnormality and an association with brain immaturity. Many lesions resolved in the first 6 months after surgery. Timing of delivery and surgery with bypass could affect the risk of brain injury.


Neuroradiology | 1999

Changes in brain water diffusion during childhood.

Michael C. Morriss; Robert A. Zimmerman; Larissa T. Bilaniuk; Jill V. Hunter; John C. Haselgrove

Abstract We studied the changes in brain water diffusion in childhood as seen on diffusion-weighted MRI in 30 children from 1 day of life to 17 years to provide a data base and to investigate the correlation of diffusion changes with known patterns of white matter maturation. The apparent diffusion coefficient (ADC) and apparent anisotropy (AA) were calculated in numerous regions of the brain to include major white matter tracts and gray matter. ADC and AA values were directly related to the structural maturity and compactness of the white matter tracts and changed with aging in a way that predated early myelination markers such as signal change on T1- or T2-weighted images. Diffusion of water is sensitive to structural changes in the brain such as white matter maturation and may be useful in investigating white matter disorders.


American Journal of Neuroradiology | 2010

Voxel-Based Analysis of Diffusion Tensor Imaging in Mild Traumatic Brain Injury in Adolescents

Z. Chu; Elisabeth A. Wilde; Jill V. Hunter; Stephen R. McCauley; Erin D. Bigler; Maya Troyanskaya; Ragini Yallampalli; Jonathan M. Chia; Harvey S. Levin

BACKGROUND AND PURPOSE: DTI of normal-appearing WM as evaluated by conventional MR imaging in mTBI has the potential to identify important regional abnormalities that relate to PCS. VBA was used to examine WM changes in acute mTBI. MATERIALS AND METHODS: WM was assessed between 1 and 6 days postinjury with voxel-based DTI analyses in 10 adolescent patients with mTBI and 10 age-matched control participants. In addition to the voxel-based group, analysis used to identify brain pathology across all patients with mTBI, 2 voxel-based linear regressions were performed. These analyses investigated the relation between 1) the ADC and PCS severity scores, and 2) ADC and scores on the BSI of emotional symptoms associated with mTBI. We hypothesized that frontotemporal WM changes would relate to symptoms associated with PCS and endorsed on the BSI. RESULTS: Patients with mTBI demonstrated significant reductions in ADC in several WM regions and in the left thalamus. As expected, no increases in ADC were found in any region of interest. All injury-affected regions showed decreased radial diffusivity, unchanged AD, and increased FA, which is consistent with axonal cytotoxic edema, reflective of acute injury. CONCLUSIONS: Whole-brain WM DTI measures can detect abnormalities in acute mTBI associated with PCS symptoms in adolescents.


Pediatrics | 2008

Spectrum of pediatric neuromyelitis optica.

Timothy Lotze; Jennifer L. Northrop; George J. Hutton; Benjamin B. Ross; Jade S. Schiffman; Jill V. Hunter

OBJECTIVE. Our goal was to describe the spectrum of clinical phenotypes, laboratory and imaging features, and treatment in pediatric patients with neuromyelitis optica. PATIENTS AND METHODS. The study consisted of a retrospective chart review of patients followed in a pediatric multiple sclerosis center with a diagnosis of neuromyelitis optica spectrum disorder. RESULTS. Nine patients with neuromyelitis optica spectrum disorders were included, all of whom were female. There were 4 black children, 2 Latin American children, 2 white children, and 1 child of mixed Latin American/white heritage. Median age at initial attack was 14 years (range: 1.9–16 years). Median disease duration was 4 years (range: 0.6–9 years). Tests for neuromyelitis optica immunoglobulin G were positive for 7 patients. Eight patients had transverse myelitis and optic neuritis, and 1 patient had longitudinally extensive transverse myelitis without optic neuritis but had a positive neuromyelitis optica immunoglobulin G antibody titer. Cerebral involvement on MRI was found in all subjects, 5 of whom were symptomatic with encephalopathy, seizures, hemiparesis, aphasia, vomiting, or hiccups. Immunosuppressive therapy reduced attack frequency and progression of disability. CONCLUSIONS. Pediatric neuromyelitis optica has a diverse clinical presentation and may be difficult to distinguish from multiple sclerosis in the early stages of the disease. The recognition of the broad spectrum of this disease to include signs and symptoms of brain involvement is aided by the availability of a serum biomarker: neuromyelitis optica immunoglobulin G. Early diagnosis and immunosuppresive treatment may help to slow the accumulation of severe disability.


Journal of Head Trauma Rehabilitation | 2008

Diffusion Tensor Imaging in Relation to Cognitive and Functional Outcome of Traumatic Brain Injury in Children

Harvey S. Levin; Elisabeth A. Wilde; Zili Chu; Ragini Yallampalli; Gerri Hanten; Xiaoqi Li; Jon Chia; Ana C. Vasquez; Jill V. Hunter

ObjectiveTo investigate the relation of white matter integrity using diffusion tensor imaging (DTI) to cognitive and functional outcome of moderate to severe traumatic brain injury (TBI) in children. DesignProspective observational study of children who had sustained moderate to severe TBI and a comparison group of children who had sustained orthopedic injury (OI). ParticipantsThirty-two children who had sustained moderate to severe TBI and 36 children with OI were studied. MethodsFiber tracking analysis of DTI acquired at 3-month postinjury and assessment of global outcome and cognitive function within 2 weeks of brain imaging. Global outcome was assessed using the Glasgow Outcome Scale and the Flanker task was used to measure cognitive processing speed and resistance to interference. ResultsFractional anisotropy and apparent diffusion coefficient values differentiated the groups and both cognitive and functional outcome measures were related to the DTI findings. Dissociations were present wherein the relation of Fractional anisotropy to cognitive performance differed between the TBI and OI groups. A DTI composite measure of white matter integrity was related to global outcome in the children with TBI. ConclusionsDTI is sensitive to white matter injury at 3 months following moderate to severe TBI in children, including brain regions that appear normal on conventional magnetic resonance imaging. DTI measures reflecting diffusion of water parallel and perpendicular to white matter tracts as calculated by fiber tracking analysis are related to global outcome, cognitive processing speed, and speed of resolving interference in children with moderate to severe TBI. Longitudinal data are needed to determine whether these relations between DTI and neurobehavioral outcome of TBI in children persist at longer follow-up intervals.


Developmental Neuroscience | 2010

Longitudinal Changes in the Corpus Callosum following Pediatric Traumatic Brain Injury

Trevor C. Wu; Elisabeth A. Wilde; Erin D. Bigler; Xiaoqi Li; Tricia L. Merkley; Ragini Yallampalli; Stephen R. McCauley; Kathleen P. Schnelle; Ana C. Vasquez; Zili Chu; Gerri Hanten; Jill V. Hunter; Harvey S. Levin

Background: Atrophy of the corpus callosum (CC) is a documented consequence of moderate-to-severe traumatic brain injury (TBI), which has been expressed as volume loss using quantitative magnetic resonance imaging (MRI). Other advanced imaging modalities such as diffusion tensor imaging (DTI) have also detected white matter microstructural alteration following TBI in the CC. The manner and degree to which macrostructural changes such as volume and microstructural changes develop over time following pediatric TBI, and their relation to a measure of processing speed is the focus of this longitudinal investigation. As such, DTI and volumetric changes in the CC in participants with TBI and a comparison group at approximately 3 and 18 months after injury as well as their relation to processing speed were determined. Methods: Forty-eight children and adolescents aged 7–17 years who sustained either complicated mild or moderate-to-severe TBI (n = 23) or orthopedic injury (OI; n = 25) were studied. The participants underwent brain MRI and were administered the Eriksen flanker task at both time points. Results: At 3 months after injury, there were significant group differences in DTI metrics in the total CC and its subregions (genu/anterior, body/central and splenium/posterior), with the TBI group demonstrating significantly lower fractional anisotropy (FA) and a higher apparent diffusion coefficient (ADC) in comparison to the OI group. These group differences were also present at 18 months after injury in all CC subregions, with lower FA and a higher ADC in the TBI group. In terms of longitudinal changes in DTI, despite the group difference in mean FA, both groups generally demonstrated a modest increase in FA over time though this increase was only significant in the splenium/posterior subregion. Interestingly, the TBI group also generally demonstrated ADC increases from 3 to 18 months though the OI group demonstrated ADC decreases over time. Volumetrically, the group differences at 3 months were marginal for the midanterior and body/central subregions and total CC. However, by 18 months, the TBI group demonstrated a significantly decreased volume in all subregions except the splenium/posterior area relative to the OI group. Unlike the OI group, which showed a significant volume increase in subregions of the CC over time, the TBI group demonstrated a significant and consistent volume decrease. Performance on a measure of processing speed did not differentiate the groups at either visit, and only the OI group showed significantly improved performance over time. Processing speed was related to FA in the splenium/posterior and total CC only in the TBI group on both occasions, with a stronger relation at 18 months. Conclusion: In response to TBI, macrostructural volume loss in the CC occurred over time; yet, at the microstructural level, DTI demonstrated both indicators of continued maturation and development even in the damaged CC, as well as evidence of potential degenerative change. Unlike volumetrics, which likely reflects the degree of overall neuronal loss and axonal damage, DTI may reflect some aspects of postinjury maturation and adaptation in white matter following TBI. Multimodality imaging studies may be important to further understand the long-term consequences of pediatric TBI.


Journal of Neurotrauma | 2012

Emerging Imaging Tools for Use with Traumatic Brain Injury Research

Jill V. Hunter; Elisabeth A. Wilde; Karen A. Tong; Barbara A. Holshouser

This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.

Collaboration


Dive into the Jill V. Hunter's collaboration.

Top Co-Authors

Avatar

Harvey S. Levin

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoqi Li

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Erin D. Bigler

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Gerri Hanten

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zili Chu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana C. Vasquez

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mary R. Newsome

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge