Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jim Brandle is active.

Publication


Featured researches published by Jim Brandle.


Canadian Journal of Plant Science | 1998

Stevia rebaudiana: Its agricultural, biological, and chemical properties

Jim Brandle; A. N. Starratt; M. Gijzen

Stevia rebaudiana is a member of the Compositae, native to Paraguay. It produces a number of high-potency low-calorie sweeteners in its leaf tissue. The sweeteners are diterpene glycosides and range between 30 and 320 times sweeter than sugar. Increasing consumer interest in natural food ingredients means that products like stevia sweeteners will be subject to increasing demand. Such demand will need to be supported by a modern mechanised production system. The purpose of this review is to summarize the existing agricultural, chemical and biochemical literature to provide a baseline for new research. Key words: Stevia, diterpene, steviol glycoside, sweeteners


Plant Physiology | 2010

Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana

Jussi J. Joensuu; Andrew J. Conley; Michael Lienemann; Jim Brandle; Markus B. Linder; Rima Menassa

Insufficient accumulation levels of recombinant proteins in plants and the lack of efficient purification methods for recovering these valuable proteins have hindered the development of plant biotechnology applications. Hydrophobins are small and surface-active proteins derived from filamentous fungi that can be easily purified by a surfactant-based aqueous two-phase system. In this study, the hydrophobin HFBI sequence from Trichoderma reesei was fused to green fluorescent protein (GFP) and transiently expressed in Nicotiana benthamiana plants by Agrobacterium tumefaciens infiltration. The HFBI fusion significantly enhanced the accumulation of GFP, with the concentration of the fusion protein reaching 51% of total soluble protein, while also delaying necrosis of the infiltrated leaves. Furthermore, the endoplasmic reticulum-targeted GFP-HFBI fusion induced the formation of large novel protein bodies. A simple and scalable surfactant-based aqueous two-phase system was optimized to recover the HFBI fusion proteins from leaf extracts. The single-step phase separation was able to selectively recover up to 91% of the GFP-HFBI up to concentrations of 10 mg mL−1. HFBI fusions increased the expression levels of plant-made recombinant proteins while also providing a simple means for their subsequent purification. This hydrophobin fusion technology, when combined with the speed and posttranslational modification capabilities of plants, enhances the value of transient plant-based expression systems.


Plant Molecular Biology | 2005

Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap

Chui E. Wong; Yong Li; B.R. Whitty; Claudia Díaz-Camino; S.R. Akhter; Jim Brandle; G.B. Golding; Elizabeth A. Weretilnyk; Barbara A. Moffatt; Marilyn Griffith

Thellungiella salsuginea (also known as T. halophila) is a close relative of Arabidopsis that is very tolerant of drought, freezing, and salinity and may be an appropriate model to identify the molecular mechanisms underlying abiotic stress tolerance in plants. We produced 6578 ESTs, which represented 3628 unique genes (unigenes), from cDNA libraries of cold-, drought-, and salinity-stressed plants from the Yukon ecotype of Thellungiella. Among the unigenes, 94.1% encoded products that were most similar in amino acid sequence to Arabidopsis and 1.5% had no match with a member of the family Brassicaceae. Unigenes from the cold library were more similar to Arabidopsis sequences than either drought- or salinity-induced sequences, indicating that latter responses may be more divergent between Thellungiella and Arabidopsis. Analysis of gene ontology using the best matched Arabidopsis locus showed that the Thellungiella unigenes represented all biological processes and all cellular components, with the highest number of sequences attributed to the chloroplast and mitochondria. Only 140 of the unigenes were found in all three abiotic stress cDNA libraries. Of these common unigenes, 70% have no known function, which demonstrates that Thellungiella can be a rich resource of genetic information about environmental responses. Some of the ESTs in this collection have low sequence similarity with those in Genbank suggesting that they may encode functions that may contribute to Thellungiella’s high degree of stress tolerance when compared with Arabidopsis. Moreover, Thellungiella is a closer relative of agriculturally important Brassica spp. than Arabidopsis, which may prove valuable in transferring information to crop improvement programs.


Biotechnology and Bioengineering | 2009

Optimization of elastin-like polypeptide fusions for expression and purification of recombinant proteins in plants

Andrew J. Conley; Jussi Joensuu; Anthony M. Jevnikar; Rima Menassa; Jim Brandle

The demand for recombinant proteins for medical and industrial use is expanding rapidly and plants are now recognized as an efficient, inexpensive means of production. Although the accumulation of recombinant proteins in transgenic plants can be low, we have previously demonstrated that fusions with an elastin‐like polypeptide (ELP) tag can significantly enhance the production yield of a range of different recombinant proteins in plant leaves. ELPs are biopolymers with a repeating pentapeptide sequence (VGVPG)n that are valuable for bioseparation, acting as thermally responsive tags for the non‐chromatographic purification of recombinant proteins. To determine the optimal ELP size for the accumulation of recombinant proteins and their subsequent purification, various ELP tags were fused to green fluorescent protein, interleukin‐10, erythropoietin and a single chain antibody fragment and then transiently expressed in tobacco leaves. Our results indicated that ELP tags with 30 pentapeptide repeats provided the best compromise between the positive effects of small ELP tags (n = 5–40) on recombinant protein accumulation and the beneficial effects of larger ELP tags (n = 80–160) on recombinant protein recovery during inverse transition cycling (ITC) purification. In addition, the C‐terminal orientation of ELP fusion tags produced higher levels of target proteins, relative to N‐terminal ELP fusions. Importantly, the ELP tags had no adverse effect on the receptor binding affinity of erythropoietin, demonstrating the inert nature of these tags. The use of ELP fusion tags provides an approach for enhancing the production of recombinant proteins in plants, while simultaneously assisting in their purification. Biotechnol. Bioeng. 2009;103: 562–573.


Plant Molecular Biology | 2006

Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis

Tania V. Humphrey; Alex Richman; Rima Menassa; Jim Brandle

The sweet steviol glycosides found in the leaves of Stevia rebaudiana Bert. are derived from the diterpene steviol which is produced from a branch of the gibberellic acid (GA) biosynthetic pathway. An understanding of the spatial organisation of the two pathways including subcellular compartmentation provides important insight for the metabolic engineering of steviol glycosides as well as other secondary metabolites in plants. The final step of GA biosynthesis, before the branch point for steviol production, is the formation of (−)-kaurenoic acid from (−)-kaurene, catalysed by kaurene oxidase (KO). Downstream of this, the first committed step in steviol glycoside synthesis is the hydroxylation of kaurenoic acid to form steviol which is then sequentially glucosylated by a series of UDP-glucosyltransferases (UGTs) to produce the variety of steviol glycosides. The subcellular location of KO and three of the UGTs involved in steviol glycoside biosynthesis was investigated by expression of GFP fusions and cell fractionation which revealed KO to be associated with the endoplasmic reticulum and the UGTs in the cytoplasm. It has also been shown by expressing the Stevia UGTs in Arabidopsis that the pathway can be partially reconstituted by recruitment of a native Arabidopsis glucosyltransferase.


Plant Biotechnology Journal | 2011

Recombinant protein production in a variety of Nicotiana hosts: a comparative analysis

Andrew J. Conley; Hong Zhu; Linda C. Le; Anthony M. Jevnikar; Byong H. Lee; Jim Brandle; Rima Menassa

Although many different crop species have been used to produce a wide range of vaccines, antibodies, biopharmaceuticals and industrial enzymes, tobacco has the most established history for the production of recombinant proteins. To further improve the heterologous protein yield of tobacco platforms, transient and stable expression of four recombinant proteins (i.e. human erythropoietin and interleukin-10, an antibody against Pseudomonas aeruginosa, and a hyperthermostable α-amylase) was evaluated in numerous species and cultivars of Nicotiana. Whereas the transient level of recombinant protein accumulation varied significantly amongst the different Nicotiana plant hosts, the variety of Nicotiana had little practical impact on the recombinant protein concentration in stable transgenic plants. In addition, this study examined the growth rate, amount of leaf biomass, total soluble protein levels and the alkaloid content of the various Nicotiana varieties to establish the best plant platform for commercial production of recombinant proteins. Of the 52 Nicotiana varieties evaluated, Nicotiana tabacum (cv. I 64) produced the highest transient concentrations of recombinant proteins, in addition to producing a large amount of biomass and a relatively low quantity of alkaloids, probably making it the most effective plant host for recombinant protein production.


FEBS Letters | 2006

Expressed sequence tags from Madagascar periwinkle (Catharanthus roseus)

Jun Murata; Dorothee Bienzle; Jim Brandle; Christoph W. Sensen; Vincenzo De Luca

The Madagascar periwinkle (Catharanthus roseus) is well known to produce the chemotherapeutic anticancer agents, vinblastine and vincristine. In spite of its importance, no expressed sequence tag (EST) analysis of this plant has been reported. Two cDNA libraries were generated from RNA isolated from the base part of young leaves and from root tips to select 9824 random clones for unidirectional sequencing, to yield 3327 related sequences and 1696 singletons by cluster analysis. Putative functions of 3663 clones were assigned, from 5023 non‐redundant ESTs to establish a resource for transcriptome analysis and gene discovery in this medicinal plant.


Plant Biotechnology Journal | 2009

Plant recombinant erythropoietin attenuates inflammatory kidney cell injury

Andrew J. Conley; Kanishka Mohib; Anthony M. Jevnikar; Jim Brandle

Human erythropoietin (EPO) is a pleiotropic cytokine with remarkable tissue-protective activities in addition to its well-established role in red blood cell production. Unfortunately, conventional mammalian cell cultures are unlikely to meet the anticipated market demands for recombinant EPO because of limited capacity and high production costs. Plant expression systems may address these limitations to enable practical, cost-effective delivery of EPO in tissue injury prevention therapeutics. In this study, we produced human EPO in tobacco and demonstrated that plant-derived EPO had tissue-protective activity. Our results indicated that targeting to the endoplasmic reticulum (ER) provided the highest accumulation levels of EPO, with a yield approaching 0.05% of total soluble protein in tobacco leaves. The codon optimization of the human EPO gene for plant expression had no clear advantage; furthermore, the human EPO signal peptide performed better than a tobacco signal peptide. In addition, we found that glycosylation was essential for the stability of plant recombinant EPO, whereas the presence of an elastin-like polypeptide fusion had a limited positive impact on the level of EPO accumulation. Confocal microscopy showed that apoplast and ER-targeted EPO were correctly localized, and N-glycan analysis demonstrated that complex plant glycans existed on apoplast-targeted EPO, but not on ER-targeted EPO. Importantly, plant-derived EPO had enhanced receptor-binding affinity and was able to protect kidney epithelial cells from cytokine-induced death in vitro. These findings demonstrate that tobacco plants may be an attractive alternative for the production of large amounts of biologically active EPO.


Plant Biotechnology Journal | 2013

High-level production of human interleukin-10 fusions in tobacco cell suspension cultures

Angelo Kaldis; Adil Ahmad; Alexandra Reid; Brian D. McGarvey; Jim Brandle; Shengwu Ma; Anthony M. Jevnikar; Susanne E. Kohalmi; Rima Menassa

The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER.


Transgenic Research | 2009

Expression and purification of an anti-Foot-and-mouth disease virus single chain variable antibody fragment in tobacco plants

Jussi J. Joensuu; Kirk Brown; Andrew J. Conley; A. Clavijo; Rima Menassa; Jim Brandle

Low-cost recombinant antibodies could provide a new strategy to control Foot-and-mouth disease virus (FMDV) outbreaks by passive immunization of susceptible animals. In this study, a single chain variable antibody fragment (scFv) recognizing FMDV coat protein VP1 was expressed in transgenic tobacco plants. To enhance the accumulation of scFv protein, the codon-usage of a murine hybridoma-derived scFv gene was adjusted to mimic highly expressed tobacco genes and fused to an elastin-like polypeptide (ELP) tag. This scFv–ELP fusion accumulated up to 0.8% of total soluble leaf protein in transgenic tobacco. To recover scFv–ELP protein from the leaf extract, a simple and scalable purification strategy was established. Purified scFv–ELP fusion was cleaved to separate the scFv portion. Finally, it was shown that the purified scFv proteins retained their capacity to bind the FMDV in the absence or presence of ELP fusion.

Collaboration


Dive into the Jim Brandle's collaboration.

Top Co-Authors

Avatar

Rima Menassa

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Anthony M. Jevnikar

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Alex Richman

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Conley

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Terry L. Delovitch

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Hong Zhu

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter L. Davies

Robarts Research Institute

View shared research outputs
Top Co-Authors

Avatar

Robert Rymerson

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Tony Jevnikar

Robarts Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge