Jim Karagiannis
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jim Karagiannis.
PLOS ONE | 2011
Reza Saberianfar; Stephen Cunningham-Dunlop; Jim Karagiannis
In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD). Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Δ mutants – just like lsk1Δ and lsc1Δ strains – are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis – including the actin interacting protein gene, aip1 – as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Δ aip1Δ double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis.
PLOS Genetics | 2012
Eun-Joo Gina Kwon; Amy Laderoute; Kate Chatfield-Reed; Lianne Vachon; Jim Karagiannis; Gordon Chua
In the fission yeast Schizosaccharomyces pombe, the transcriptional-regulatory network that governs flocculation remains poorly understood. Here, we systematically screened an array of transcription factor deletion and overexpression strains for flocculation and performed microarray expression profiling and ChIP–chip analysis to identify the flocculin target genes. We identified five transcription factors that displayed novel roles in the activation or inhibition of flocculation (Rfl1, Adn2, Adn3, Sre2, and Yox1), in addition to the previously-known Mbx2, Cbf11, and Cbf12 regulators. Overexpression of mbx2+ and deletion of rfl1+ resulted in strong flocculation and transcriptional upregulation of gsf2 +/pfl1+ and several other putative flocculin genes (pfl2+–pfl9+). Overexpression of the pfl+ genes singly was sufficient to trigger flocculation, and enhanced flocculation was observed in several combinations of double pfl+ overexpression. Among the pfl1+ genes, only loss of gsf2+ abrogated the flocculent phenotype of all the transcription factor mutants and prevented flocculation when cells were grown in inducing medium containing glycerol and ethanol as the carbon source, thereby indicating that Gsf2 is the dominant flocculin. In contrast, the mild flocculation of adn2+ or adn3+ overexpression was likely mediated by the transcriptional activation of cell wall–remodeling genes including gas2+, psu1+, and SPAC4H3.03c. We also discovered that Mbx2 and Cbf12 displayed transcriptional autoregulation, and Rfl1 repressed gsf2+ expression in an inhibitory feed-forward loop involving mbx2+. These results reveal that flocculation in S. pombe is regulated by a complex network of multiple transcription factors and target genes encoding flocculins and cell wall–remodeling enzymes. Moreover, comparisons between the flocculation transcriptional-regulatory networks of Saccharomyces cerevisiae and S. pombe indicate substantial rewiring of transcription factors and cis-regulatory sequences.
PLOS ONE | 2012
Stefan Rentas; Reza Saberianfar; Charnpal Grewal; Rachelle L. Kanippayoor; Mithilesh Mishra; Dannel McCollum; Jim Karagiannis
In response to perturbation of the cell division machinery fission yeast cells activate regulatory networks that ensure the faithful completion of cytokinesis. For instance, when cells are treated with drugs that impede constriction of the actomyosin ring (low doses of Latrunculin A, for example) these networks ensure that cytokinesis is complete before progression into the subsequent mitosis. Here, we identify three previously uncharacterized genes, hif2, set3, and snt1, whose deletion results in hyper-sensitivity to LatA treatment and in increased rates of cytokinesis failure. Interestingly, these genes are orthologous to TBL1X, MLL5, and NCOR2, human genes that encode components of a histone deacetylase complex with a known role in cytokinesis. Through co-immunoprecipitation experiments, localization studies, and phenotypic analysis of gene deletion mutants, we provide evidence for an orthologous complex in fission yeast. Furthermore, in light of the putative role of the complex in chromatin modification, together with our results demonstrating an increase in Set3p levels upon Latrunculin A treatment, global gene expression profiles were generated. While this analysis demonstrated that the expression of cytokinesis genes was not significantly affected in set3Δ backgrounds, it did reveal defects in the ability of the mutant to regulate genes with roles in the cellular response to stress. Taken together, these findings support the existence of a conserved, multi-protein complex with a role in promoting the successful completion of cytokinesis.
Genetics | 2012
Julie Genereaux; Stephanie Kvas; Dominik Dobransky; Jim Karagiannis; Gregory B. Gloor; Christopher J. Brandl
Tra1 is a 3744-residue component of the Saccharomyces cerevisiae SAGA, NuA4, and ASTRA complexes. Tra1 contains essential C-terminal PI3K and FATC domains, but unlike other PIKK (phosphoinositide three-kinase–related kinase) family members, lacks kinase activity. To analyze functions of the FATC domain, we selected for suppressors of tra1-F3744A, an allele that results in slow growth under numerous conditions of stress. Two alleles of TTI2, tti2-F328S and tti2-I336F, acted in a partially dominant fashion to suppress the growth-related phenotypes associated with tra1-F3744A as well as its resulting defects in transcription. tti2-F328S suppressed an additional FATC domain mutation (tra1-L3733A), but not a mutation in the PI3K domain or deletions of SAGA or NuA4 components. We find eGFP-tagged Tti2 distributed throughout the cell. Tti2 is a component of the ASTRA complex, and in mammalian cells associates with molecular chaperones in complex with Tti1 and Tel2. Consistent with this finding, Tra1 levels are reduced in a strain with a temperature-sensitive allele of tel2. Further agreeing with a possible role for Tti2 in the folding or stabilization of Tra1, tra1-F3744A was mislocalized to the cytoplasm, particularly under conditions of stress. Since an intragenic mutation of tra1-R3590I also suppressed F3744A, we propose that Tti2 is required for the folding/stability of the C-terminal FATC and PI3K domains of Tra1 into their functionally active form.
Genetics | 2013
Lianne Vachon; Justin Wood; Eun-Joo Gina Kwon; Amy Laderoute; Kate Chatfield-Reed; Jim Karagiannis; Gordon Chua
In Schizosaccharomyces pombe, over 90% of transcription factor genes are nonessential. Moreover, the majority do not exhibit significant growth defects under optimal conditions when deleted, complicating their functional characterization and target gene identification. Here, we systematically overexpressed 99 transcription factor genes with the nmt1 promoter and found that 64 transcription factor genes exhibited reduced fitness when ectopically expressed. Cell cycle defects were also often observed. We further investigated three uncharacterized transcription factor genes (toe1+–toe3+) that displayed cell elongation when overexpressed. Ectopic expression of toe1+ resulted in a G1 delay while toe2+ and toe3+ overexpression produced an accumulation of septated cells with abnormalities in septum formation and nuclear segregation, respectively. Transcriptome profiling and ChIP-chip analysis of the transcription factor overexpression strains indicated that Toe1 activates target genes of the pyrimidine-salvage pathway, while Toe3 regulates target genes involved in polyamine synthesis. We also found that ectopic expression of the putative target genes SPBC3H7.05c, and dad5+ and SPAC11D3.06 could recapitulate the cell cycle phenotypes of toe2+ and toe3+ overexpression, respectively. Furthermore, single deletions of the putative target genes urg2+ and SPAC1399.04c, and SPBC3H7.05c, SPACUNK4.15, and rds1+, could suppress the phenotypes of toe1+ and toe2+ overexpression, respectively. This study implicates new transcription factors and metabolism genes in cell cycle regulation and demonstrates the potential of systematic overexpression analysis to elucidate the function and target genes of transcription factors in S. pombe.
G3: Genes, Genomes, Genetics | 2016
Kyle S. Hoffman; Martin L. Duennwald; Jim Karagiannis; Julie Genereaux; Alexander S. McCarton; Christopher J. Brandl
The TTT complex is composed of the three essential proteins Tel2, Tti1, and Tti2. The complex is required to maintain steady state levels of phosphatidylinositol 3-kinase-related kinase (PIKK) proteins, including mTOR, ATM/Tel1, ATR/Mec1, and TRRAP/Tra1, all of which serve as regulators of critical cell signaling pathways. Due to their association with heat shock proteins, and with newly synthesized PIKK peptides, components of the TTT complex may act as cochaperones. Here, we analyze the consequences of depleting the cellular level of Tti2 in Saccharomyces cerevisiae. We show that yeast expressing low levels of Tti2 are viable under optimal growth conditions, but the cells are sensitive to a number of stress conditions that involve PIKK pathways. In agreement with this, depleting Tti2 levels decreased expression of Tra1, Mec1, and Tor1, affected their localization and inhibited the stress responses in which these molecules are involved. Tti2 expression was not increased during heat shock, implying that it does not play a general role in the heat shock response. However, steady state levels of Hsp42 increase when Tti2 is depleted, and tti2L187P has a synthetic interaction with exon 1 of the human Huntingtin gene containing a 103 residue polyQ sequence, suggesting a general role in protein quality control. We also find that overexpressing Hsp90 or its cochaperones is synthetic lethal when Tti2 is depleted, an effect possibly due to imbalanced stoichiometry of a complex required for PIKK assembly. These results indicate that Tti2 does not act as a general chaperone, but may have a specialized function in PIKK folding and/or complex assembly.
G3: Genes, Genomes, Genetics | 2013
Lance F. DaSilva; Samantha Pillon; Julie Genereaux; Megan J. Davey; Gregory B. Gloor; Jim Karagiannis; Christopher J. Brandl
Mec1, a member of the phosphoinositide three-kinase-related kinase (PIKK) family of proteins, is involved in the response to replicative stress and DNA damage and in telomere maintenance. An essential 30 to 35 residue, the FATC domain is found at the C-terminus of all PIKK family members. To investigate the roles of the C-terminal residues of Mec1, we characterized alleles of Saccharomyces cerevisiae mec1 that alter the FATC domain. A change of the terminal tryptophan to alanine resulted in temperature-sensitive growth, sensitivity to hydroxyurea, and diminished kinase activity in vitro. Addition of a terminal glycine or deletion of one, two, or three residues resulted in loss of cell viability and kinase function. Each of these Mec1 derivatives was less stable than wild-type Mec1, eluted abnormally from a size exclusion column, and showed reduced nuclear localization. We identified rpn3-L140P, which encodes a component of the 19S proteasomal regulatory particle of the 26S proteasome, as a suppressor of the temperature-sensitive growth caused by mec1-W2368A. The rpn3-L140P allele acted in a partially dominant fashion. It was not able to suppress the inviability of the C-terminal truncations or additions or the hydroxyurea sensitivity of mec1-W2368A. The rpn3-L140P allele restored Mec1-W2368A to nearly wild-type protein levels at 37°, an effect partially mimicked by the proteasome inhibitor MG-132. Our study supports a role for the C-terminus in Mec1 folding and stability, and suggests a role for the proteasome in regulating Mec1 levels.
Cell Division | 2012
Charnpal Grewal; Jack Hickmott; Stefan Rentas; Jim Karagiannis
BackgroundIn Schizosaccharomyces pombe the SET domain protein, Set3p - together with its interacting partners, Snt1p, and Hif2p - form a complex that aids in preventing cell division failure upon mild cytokinetic stress. Intriguingly, the human orthologs of these proteins (MLL5, NCOR2, and TBL1X) are also important for the faithful completion of cytokinesis in tissue culture cells. Since MLL5, NCOR2, and TBL1X form a complex with the histone deacetylase, HDAC3, we sought to determine if an orthologous counterpart played a regulatory role in fission yeast cytokinesis.ResultsIn this report we identify the hos2 gene as the fission yeast HDAC3 ortholog. We show that Hos2p physically interacts with Set3p, Snt1p, and Hif2p, and that hos2∆ mutants are indeed compromised in their ability to reliably complete cell division in the presence of mild cytokinetic stresses. Furthermore, we demonstrate that over-expression of hos2 causes severe morphological and cytokinetic defects. Lastly, through recombinase mediated cassette exchange, we show that expression of human HDAC3 complements the cytokinetic defects exhibited by hos2∆ cells.ConclusionsThese data support a model in which Hos2p functions as an essential component of the Set3p-Snt1p-Hif2p complex with respect to the regulation of cytokinesis. The ability of human HDAC3 to complement the cytokinesis defects associated with the deletion of the hos2 gene suggests that further analysis of this system could provide insight into the role of HDAC3 in both the regulation of cell division, as well as other biological processes influenced by HDAC3 deacetylation.
BMC Research Notes | 2012
Jim Karagiannis
BackgroundThe largest sub-unit of RNA polymerase II, Rpb1p, has long been known to be subject to post-translational modifications that influence various aspects of pre-mRNA processing. However, the portion of the Rpb1p molecule subject to these modifications – the carboxy-terminal domain or CTD – remains the subject of much fascination. Intriguingly, the CTD possesses a unique repetitive structure consisting of multiple repeats of the heptapeptide sequence, Y1S2P3T4S5P6S7. While these repeats are critical for viability, they are not required for basal transcriptional activity in vitro. This suggests that – even though the CTD is not catalytically essential – it must perform other critical functions in eukaryotes.Presentation of the HypothesisBy formally applying the long-standing mathematical principles of information theory, I explore the hypothesis that complex post-translational modifications of the CTD represent a means for the dynamic “programming” of Rpb1p and thus for the discrete modulation of the expression of specific gene subsets in eukaryotes.Testing the HypothesisEmpirical means for testing the informational capacity and regulatory potential of the CTD – based on simple genetic analysis in yeast model systems – are put forward and discussed.Implications of the HypothesisThese ideas imply that the controlled manipulation of CTD effectors could be used to “program” the CTD and thus to manipulate biological processes in eukaryotes in a definable manner.
Communicative & Integrative Biology | 2013
Kyle S. Hoffman; Haeyoung Yoo; Jim Karagiannis
In this report the phenotypic effects of systematic site-directed mutations in the fission yeast RNA pol II carboxy terminal domain (CTD) are investigated. Remarkably, we find that alterations in CTD structure and/or phosphorylation result in distinct phenotypic changes related to morphogenetic control. A hypothesis based upon the concepts of “informational entropy” and “algorithmic transformation” is developed to explicate/rationalize these results.