Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jim Kiggans is active.

Publication


Featured researches published by Jim Kiggans.


Journal of the American Chemical Society | 2013

Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4

Zengcai Liu; Wujun Fu; E. Andrew Payzant; Xiang Yu; Zili Wu; Nancy J. Dudney; Jim Kiggans; Kunlun Hong; Adam J. Rondinone; Chengdu Liang

Lithium-ion-conducting solid electrolytes hold promise for enabling high-energy battery chemistries and circumventing safety issues of conventional lithium batteries. Achieving the combination of high ionic conductivity and a broad electrochemical window in solid electrolytes is a grand challenge for the synthesis of battery materials. Herein we show an enhancement of the room-temperature lithium-ion conductivity by 3 orders of magnitude through the creation of nanostructured Li(3)PS(4). This material has a wide electrochemical window (5 V) and superior chemical stability against lithium metal. The nanoporous structure of Li(3)PS(4) reconciles two vital effects that enhance the ionic conductivity: (1) the reduction of the dimensions to a nanometer-sized framework stabilizes the high-conduction β phase that occurs at elevated temperatures, and (2) the high surface-to-bulk ratio of nanoporous β-Li(3)PS(4) promotes surface conduction. Manipulating the ionic conductivity of solid electrolytes has far-reaching implications for materials design and synthesis in a broad range of applications, including batteries, fuel cells, sensors, photovoltaic systems, and so forth.


Environmental Science & Technology | 2011

Mesoporous Carbon for Capacitive Deionization of Saline Water

Costas Tsouris; Richard T. Mayes; Jim Kiggans; Ketki Sharma; Sotira Yiacoumi; David W. DePaoli; Sheng Dai

Self-assembled mesoporous carbon (MC) materials have been synthesized and tested for application in capacitive deionization (CDI) of saline water. MC was prepared by self-assembly of a triblock copolymer with hydrogen-bonded chains via a phenolic resin, such as resorcinol or phloroglucinol in acidic conditions, followed by carbonization and, in some cases, activation by KOH. Carbon synthesized in this way was ground into powder, from which activated MC sheets were produced. In a variation of this process, after the reaction of triblock copolymer with resorcinol or phloroglucinol, the gel that was formed was used to coat a graphite plate and then carbonized. The coated graphite plate in this case was not activated and was tested to serve as current collector during the CDI process. The performance of these MC materials was compared to that of carbon aerogel for salt concentrations ranging between 1000 ppm and 35,000 ppm. Resorcinol-based MC removed up to 15.2 mg salt per gram of carbon, while carbon aerogel removed 5.8 mg salt per gram of carbon. Phloroglucinol-based MC-coated graphite exhibited the highest ion removal capacity at 21 mg of salt per gram of carbon for 35,000 ppm salt concentration.


Langmuir | 2012

Optimization of LiFePO4 nanoparticle suspensions with polyethyleneimine for aqueous processing.

Jianlin Li; Beth L. Armstrong; Jim Kiggans; Claus Daniel; David L. Wood

Addition of dispersants to aqueous based lithium-ion battery electrode formulations containing LiFePO(4) is critical to obtaining a stable suspension. The resulting colloidal suspensions enable dramatically improved coating deposition when processing electrodes. This research examines the colloidal chemistry modifications based on polyethyleneimine (PEI) addition and dispersion characterization required to produce high quality electrode formulations and coatings for LiFePO(4) active cathode material. The isoelectric point, a key parameter in characterizing colloidal dispersion stability, of LiFePO(4) and super P C45 were determined to be pH = 4.3 and 3.4, respectively. PEI, a cationic surfactant, was found to be an effective dispersant. It is demonstrated that 1.0 wt % and 0.5 wt % PEI were required to stabilize the LiFePO(4) and super P C45 suspension, respectively. LiFePO(4) cathode suspensions with 1.5 wt % PEI demonstrated the best dispersibility of all components, as evidenced by viscosity and agglomerate size of the suspensions and elemental distribution within dry cathodes. The addition of PEI significantly improved the LiFePO(4) performance.


Chemical Communications | 2011

Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound.

Wujun Fu; Jim Kiggans; Steven H. Overbury; Viviane Schwartz; Chengdu Liang

Microwave induced rapid decomposition of nitromethane at low temperature exfoliates the graphene sheets from the FeCl(3) and CH(3)NO(2) co-intercalated graphite compound without creating many defects and functional groups. This approach provides a scalable method for high-quality graphene materials via low-temperature exfoliation of graphite under mild chemical conditions.


Journal of Colloid and Interface Science | 2013

Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes

Jianlin Li; Beth L. Armstrong; Claus Daniel; Jim Kiggans; David L. Wood

Addition of polyethyleneimine (PEI) to aqueous LiFePO4 nanoparticle suspensions improves stability and reduces agglomerate size, which is beneficial to lithium-ion battery cathode manufacturing. This research examines the effect of both PEI concentration and molecular weight (MW) on dispersing LiFePO4 and Super P C45 in multicomponent aqueous suspensions. It is demonstrated that the optimal conditions for obtaining stable suspensions with minimal agglomerate size are 1.5 wt% PEI with MW=2000 g mol(-1) and 5.0 wt% PEI with MW=10,000 g mol(-1) for LiFePO4 and Super P C45, respectively. The mixing sequence also affects rheological properties of these suspensions. It is found that dispersing the LiFePO4 and Super P C45 separately yielded suspensions with superior properties (Newtonian rheological behavior, smaller agglomerate size, improved settling, etc.). In particular, dispersing the LiFePO4 prior to the Super P C45 when making the final multicomponent suspension is found to be beneficial, which was evidenced by higher half-cell discharge capacity.


Journal of The Electrochemical Society | 2010

Carbon Fiber Paper Cathodes for Lithium Ion Batteries

Andrew K Kercher; Jim Kiggans; Nancy J. Dudney

A novel lithium ion battery cathode structure was produced which has the potential for excellent capacity retention and good thermal management. In these cathodes, the active cathode material (lithium iron phosphate) was carbon bonded to a thermally and electrically conductive carbon fiber paper (CFP) support. Electrochemical testing was performed on Swagelok cells consisting of CFP cathodes and lithium anodes. High specific energy, near-theoretical capacity, and good cycling performance were demonstrated for 0.11 mm and 0.37 mm thick CFP cathodes.


Key Engineering Materials | 2010

Consolidation Process in Near Net Shape Manufacturing of Armstrong CP-Ti/Ti-6Al-4V Powders

Yukinori Yamamoto; Jim Kiggans; Michael B. Clark; Stephen D. Nunn; Adrian S. Sabau; William H. Peter

This paper summarizes our recent efforts to develop the manufacturing technologies of consolidated net-shape components by using new low-cost commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy powders made by the Armstrong process. Fabrication processes of net shape/ near net shape components, such as uniaxial die-pressing, cold isostatic pressing (CIP), sintering, roll compaction and stamping, have been evaluated. The press-and-sinter processing of the powders were systematically investigated in terms of theoretical density and microstructure as a function of time, pressure, and temperature. Up to 96.4% theoretical density has been achieved with the press-and-sinter technology. Tensile properties of the consolidated samples exhibit good ductility as well as equivalent yield/ultimate tensile strengths to those of fully consolidate materials, even with the presence of a certain amount of porosity. A consolidation model is also under development to interpret the powder deformation during processing. Net shape components made of the Armstrong powder can successfully be fabricated with clearer surface details by using press-and-sinter processing.


210th ECS Meeting | 2007

Graphite Foams for Lithium-Ion Battery Current Collectors

Nancy J. Dudney; Terry N. Tiegs; Jim Kiggans; Young-Il Jang; James W. Klett

Graphite open-cell foams, with their very high electronic and thermal conductivities, may serve as high surface area and corrosion resistant current collectors for lithium-ion batteries. As a proof of principle, cathodes were prepared by sintering carbon-coated LiFePO4 particles into the porous graphite foams. Cycling these cathodes in a liquid electrolyte cell showed promising performance even for materials and coatings that have not been optimized. The specific capacity is not limited by the foam structure, but by the cycling performance of the coated LiFePO4 particles. Upon extended cycling for more than 100 deep cycles, no loss of capacity is observed for rates of C/2 or less. The uncoated graphite foams will slowly intercalate lithium reversibly at potentials less than 0.2 volts versus lithium.


Key Engineering Materials | 2012

Current Status of Ti PM: Progress, Opportunities and Challenges

William H. Peter; Wei Chen; Yukinori Yamamoto; Ryan R. Dehoff; Thomas R Muth; Stephen D. Nunn; Jim Kiggans; Michael B. Clark; Adrian S. Sabau; Sarma B Gorti; Craig A. Blue; James C. Williams

Utilization of titanium components made by powder metallurgy methods has had limited acceptance largely due to the high cost of titanium (Ti) powder. There has been renewed interest in lower cost economical powders and several Ti reduction methods that produce a particulate product show promise. This talk summarizes work done at Oak Ridge National Laboratory to consolidate these economical powders into mill products. Press and sinter consolidation, hot isostatic pressing (HIP) and direct roll consolidation to make sheet have been explored. The characteristics of the consolidated products will be described as a function of the consolidation parameters.


Fusion Science and Technology | 2014

High-Heat-Flux Testing of Irradiated Tungsten-Based Materials for Fusion Applications Using Infrared Plasma Arc Lamps

Adrian S. Sabau; Evan Keith Ohriner; Jim Kiggans; Charles Ross Schaich; Y. Ueda; David C. Harper; Yutai Katoh; Lance Lewis Snead

Abstract Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Radiological surveys indicated minimal contamination of the 36-× 36-× 18-cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

Collaboration


Dive into the Jim Kiggans's collaboration.

Top Co-Authors

Avatar

Claus Daniel

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jianlin Li

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Adrian S. Sabau

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Beth L. Armstrong

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Craig A. Blue

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nancy J. Dudney

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David L. Wood

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Fred C. Montgomery

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen D. Nunn

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Terry N. Tiegs

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge