Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jim Mori is active.

Publication


Featured researches published by Jim Mori.


Science | 1993

Near-field investigations of the Landers earthquake sequence, April to July 1992.

Kerry Sieh; Lucile M. Jones; Egill Hauksson; Kenneth W. Hudnut; Donna Eberhart-Phillips; Thomas H. Heaton; Susan E. Hough; K. Hutton; Hiroo Kanamori; Anne Lilje; Scott C. Lindvall; Sally F. McGill; Jim Mori; Charles M. Rubin; James A. Spotila; Joann M. Stock; Hong Kie Thio; Jerome Treiman; Brian P. Wernicke; Judith Zachariasen

The Landers earthquake, which had a moment magnitude (Mw) of 7.3, was the largest earthquake to strike the contiguous United States in 40 years. This earthquake resulted from the rupture of five major and many minor right-lateral faults near the southern end of the eastern California shear zone, just north of the San Andreas fault. Its Mw 6.1 preshock and Mw 6.2 aftershock had their own aftershocks and foreshocks. Surficial geological observations are consistent with local and far-field seismologic observations of the earthquake. Large surficial offsets (as great as 6 meters) and a relatively short rupture length (85 kilometers) are consistent with seismological calculations of a high stress drop (200 bars), which is in turn consistent with an apparently long recurrence interval for these faults.


Eos, Transactions American Geophysical Union | 1999

The Chi‐Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault

Kuo-Fong Ma; Chyi-Tyi Lee; Yi-Ben Tsai; Tzay-Chyn Shin; Jim Mori

In the early morning (01:47 local time) of September 21, 1999, the largest earthquake of the century in Taiwan (Mw=7.6, ML=7.3) struck the central island near the small town of Chi-Chi. The hypocenter was located by the Central Weather Bureau Seismological Center at 23.87°N, 120.75°E, with a depth of about 7 km. There were extensive surface ruptures for about 85 km along the Chelungpu fault with vertical thrust and left lateral strike-slip offsets. The maximum displacement of about 9.8 meters is among the largest fault movements ever measured for modern earthquakes. There was severe destruction in the towns of Chungliao, Nantou,Taichung, FengYuan, and Tungshi, with over 2300 fatalities and 8700 injuries.


Nature | 2006

Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project

Kuo-Fong Ma; Hidemi Tanaka; Sheng-Rong Song; Chien Ying Wang; Jih Hao Hung; Yi Ben Tsai; Jim Mori; Yen Fang Song; Eh Chao Yeh; Wonn Soh; Hiroki Sone; Li-Wei Kuo; Hung Yu Wu

Determining the seismic fracture energy during an earthquake and understanding the associated creation and development of a fault zone requires a combination of both seismological and geological field data. The actual thickness of the zone that slips during the rupture of a large earthquake is not known and is a key seismological parameter in understanding energy dissipation, rupture processes and seismic efficiency. The 1999 magnitude-7.7 earthquake in Chi-Chi, Taiwan, produced large slip (8 to 10 metres) at or near the surface, which is accessible to borehole drilling and provides a rare opportunity to sample a fault that had large slip in a recent earthquake. Here we present the retrieved cores from the Taiwan Chelungpu-fault Drilling Project and identify the main slip zone associated with the Chi-Chi earthquake. The surface fracture energy estimated from grain sizes in the gouge zone of the fault sample was directly compared to the seismic fracture energy determined from near-field seismic data. From the comparison, the contribution of gouge surface energy to the earthquake breakdown work is quantified to be 6 per cent.


Bulletin of the Seismological Society of America | 2004

Spatial and Temporal Distribution of Slip for the 1999 Chi-Chi, Taiwan, Earthquake

Kuo-Fong Ma; Jim Mori; Shiann-Jong Lee; Shui-Beih Yu

We investigated the rupture process of the 1999 Chi-Chi, Taiwan, earth- quake, using high-quality near-source strong-motion records, broadband teleseismic displacement waveforms, and well-distributed Global Positioning System (GPS) data. The near-source strong-motion displacement waveforms recorded significant static offsets of up to 8 m. The teleseismic displacement records show a significant pulse with duration of about 18 to 20 sec. Taking into account the surface displacements observed along the Chelungpu fault, we considered two fault geometries: a single planar fault and a two-segment fault with a northeast-striking section near the north- ern end. Using the finite-fault model with variable slip vectors, we derived two models of the temporal and spatial slip distribution of the earthquake. The GPS data provided good surface displacement constraints for the slip-distribution determina- tion. The spatial slip distribution is generally consistent with field observations. The results for the simple fault model show a large asperity located in the region about 25 to 55 km north of the hypocenter with maximum slip of about 15 m. When we use the two-segment model, the asperity further extends to the region where the fault bends toward the northeast with a maximum slip of up to 20 m. A large amount of right-lateral slip beneath station TCU068 is necessary to explain its observed large west movement. It implies a local converging slip at the corner where the fault bends to the northeast. The slip amplitude near the hypocenter is about 3 to 6 m. The seismic moments determined from the various data sets are within the range of 2 to 4 10 27 dyne cm. Most of the slip concentrated at shallow depths (less than 10 km). The total rupture duration is about 28 sec, and the rupture velocity is 75% to 80% of the shear-wave velocity. The slip vector shows a clockwise rotation during the fault rupture. The static stress drop of the large asperity region is comparable with the dynamic stress drop, as observed directly from the slip velocity at the station near the large slip region.


Journal of Geophysical Research | 1997

Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation

Jim Mori; Rachel E. Abercrombie

Statistics of earthquakes in California show linear frequency-magnitude relationships in the range of M2.0 to M5.5 for various data sets. Assuming Gutenberg-Richter distributions, there is a systematic decrease in b value with increasing depth of earthquakes. We find consistent results for various data sets from northern and southern California that both include and exclude the larger aftershock sequences. We suggest that at shallow depth (∼0 to 6 km) conditions with more heterogeneous material properties and lower lithospheric stress prevail. Rupture initiations are more likely to stop before growing into large earthquakes, producing relatively more smaller earthquakes and consequently higher b values. These ideas help to explain the depth-dependent observations of foreshocks in the western United States. The higher occurrence rate of foreshocks preceding shallow earthquakes can be interpreted in terms of rupture initiations that are stopped before growing into the mainshock. At greater depth (9-15 km), any rupture initiation is more likely to continue growing into a larger event, so there are fewer foreshocks. If one assumes that frequency-magnitude statistics can be used to estimate probabilities of a small rupture initiation growing into a larger earthquake, then a small (M2) rupture initiation at 9 to 12 km depth is 18 times more likely to grow into a M5.5 or larger event, compared to the same small rupture initiation at 0 to 3 km.


Science | 2013

Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements

Patrick M. Fulton; Emily E. Brodsky; Yoshihiro Kano; Jim Mori; Frederick M. Chester; Tsuyoshi Ishikawa; Robert N. Harris; Weiren Lin; Nobuhisa Eguchi; Sean Toczko; T Expedition; Kr Scientists

Deep Drilling for Earthquake Clues The 2011 Mw 9.0 Tohoku-Oki earthquake and tsunami were remarkable in many regards, including the rupturing of shallow trench sediments with huge associated slip (see the Perspective by Wang and Kinoshita). The Japan Trench Fast Drilling Project rapid response drilling expedition sought to sample and monitor the fault zone directly through a series of boreholes. Chester et al. (p. 1208) describe the structure and composition of the thin fault zone, which is predominately comprised of weak clay-rich sediments. Using these same fault-zone materials, Ujiie et al. (p. 1211) performed high-velocity frictional experiments to determine the physical controls on the large slip that occurred during the earthquake. Finally, Fulton et al. (p. 1214) measured in situ temperature anomalies across the fault zone for 9 months, establishing a baseline for frictional resistance and stress during and following the earthquake. The Tohoku-Oki earthquake occurred along a thin, clay-rich fault zone in the basal strata of the subducting plate. The frictional resistance on a fault during slip controls earthquake dynamics. Friction dissipates heat during an earthquake; therefore, the fault temperature after an earthquake provides insight into the level of friction. The Japan Trench Fast Drilling Project (Integrated Ocean Drilling Program Expedition 343 and 343T) installed a borehole temperature observatory 16 months after the March 2011 moment magnitude 9.0 Tohoku-Oki earthquake across the fault where slip was ~50 meters near the trench. After 9 months of operation, the complete sensor string was recovered. A 0.31°C temperature anomaly at the plate boundary fault corresponds to 27 megajoules per square meter of dissipated energy during the earthquake. The resulting apparent friction coefficient of 0.08 is considerably smaller than static values for most rocks.


Science | 2013

Low Coseismic Shear Stress on the Tohoku-Oki Megathrust Determined from Laboratory Experiments

Kohtaro Ujiie; Hanae Tanaka; Tsubasa Saito; Akito Tsutsumi; Jim Mori; Jun Kameda; Emily E. Brodsky; Frederick M. Chester; Nobuhisa Eguchi; Sean Toczko; Expedition; T Scientists

Deep Drilling for Earthquake Clues The 2011 Mw 9.0 Tohoku-Oki earthquake and tsunami were remarkable in many regards, including the rupturing of shallow trench sediments with huge associated slip (see the Perspective by Wang and Kinoshita). The Japan Trench Fast Drilling Project rapid response drilling expedition sought to sample and monitor the fault zone directly through a series of boreholes. Chester et al. (p. 1208) describe the structure and composition of the thin fault zone, which is predominately comprised of weak clay-rich sediments. Using these same fault-zone materials, Ujiie et al. (p. 1211) performed high-velocity frictional experiments to determine the physical controls on the large slip that occurred during the earthquake. Finally, Fulton et al. (p. 1214) measured in situ temperature anomalies across the fault zone for 9 months, establishing a baseline for frictional resistance and stress during and following the earthquake. The Tohoku-Oki earthquake occurred along a thin, clay-rich fault zone in the basal strata of the subducting plate. Large coseismic slip was thought to be unlikely to occur on the shallow portions of plate-boundary thrusts, but the 11 March 2011 Tohoku-Oki earthquake [moment magnitude (Mw) = 9.0] produced huge displacements of ~50 meters near the Japan Trench with a resultant devastating tsunami. To investigate the mechanisms of the very large fault movements, we conducted high-velocity (1.3 meters per second) friction experiments on samples retrieved from the plate-boundary thrust associated with the earthquake. The results show a small stress drop with very low peak and steady-state shear stress. The very low shear stress can be attributed to the abundance of weak clay (smectite) and thermal pressurization effects, which can facilitate fault slip. This behavior provides an explanation for the huge shallow slip that occurred during the earthquake.


Science | 2013

Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

Frederick M. Chester; Christie D. Rowe; Kohtaro Ujiie; James D. Kirkpatrick; Christine Regalla; Francesca Remitti; J. Casey Moore; Virginia G. Toy; Monica Wolfson-Schwehr; Santanu Bose; Jun Kameda; Jim Mori; Emily E. Brodsky; Nobuhisa Eguchi; Sean Toczko; Expedition; T Scientists

Deep Drilling for Earthquake Clues The 2011 Mw 9.0 Tohoku-Oki earthquake and tsunami were remarkable in many regards, including the rupturing of shallow trench sediments with huge associated slip (see the Perspective by Wang and Kinoshita). The Japan Trench Fast Drilling Project rapid response drilling expedition sought to sample and monitor the fault zone directly through a series of boreholes. Chester et al. (p. 1208) describe the structure and composition of the thin fault zone, which is predominately comprised of weak clay-rich sediments. Using these same fault-zone materials, Ujiie et al. (p. 1211) performed high-velocity frictional experiments to determine the physical controls on the large slip that occurred during the earthquake. Finally, Fulton et al. (p. 1214) measured in situ temperature anomalies across the fault zone for 9 months, establishing a baseline for frictional resistance and stress during and following the earthquake. The Tohoku-Oki earthquake occurred along a thin, clay-rich fault zone in the basal strata of the subducting plate. The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.


Journal of Geophysical Research | 1995

Localized boundary layer below the mid‐Pacific velocity anomaly identified from a PcP precursor

Jim Mori; Donald V. Helmberger

Dense record sections from deep earthquakes in Fiji and Argentina recorded on hundreds of short-period stations in California at distances of 81° to 85° are used to investigate the detailed P wave velocity structure above the core-mantle boundary (CMB). In the Fiji data a secondary phase arriving 2 to 4 s after the direct P is identified as a precursor to PcP. This phase provides good evidence for a reflection off the top of a thin low-velocity layer above the CMB. Comparisons to synthetic seismograms indicate a layer thickness of 10 km and a velocity reduction of 5%–10% compared to the overlying mantle. A record section from an Argentina event does not show the PcP precursor, indicating that the low-velocity layer is not a global feature. This thin low-velocity layer is in the same place as a much larger S wave velocity anomaly in the lower mantle and is probably indicative of a boundary layer just above the CMB under the mid-Pacific.


Science | 2013

Continuous Permeability Measurements Record Healing Inside the Wenchuan Earthquake Fault Zone

Lian Xue; Haibing Li; Emily E. Brodsky; Zhi-Qing Xu; Yasuyuki Kano; Huan Wang; Jim Mori; Jialiang Si; Junling Pei; Wei Zhang; Guang Yang; Zhiming Sun; Yao Huang

Water at the Bottom of a Well Earthquakes generate numerous fractures as they propagate through an underground fault zone. These fractures strongly influence the way in which fluids flow in the subsurface, and the permeability of fault zones is often used as a proxy for the extent of fracturing. Following the 2008 Mw 7.9 Wenchuan earthquake in central China, several wells were drilled in and around the fault zone to understand the mechanics of the earthquake. Because the bottoms of these deep boreholes were open, the water levels in the wells were sensitive to tidal forces acting on the surrounding rock. Through continuous measurements of water levels over 1.5 years, Xue et al. (p. 1555) found that the rate at which water was pumped in and out of the borehole was proportional to the permeability of the fault zone, providing a direct way to measure the evolution of the hydrologic properties of a fault zone following a major earthquake. Permeability decreased ∼25% during that time, suggesting that fractures generated in fault zones heal relatively rapidly. Measurements of permeability inside a fault zone after a major earthquake reveal rapid healing of fractures. Permeability controls fluid flow in fault zones and is a proxy for rock damage after an earthquake. We used the tidal response of water level in a deep borehole to track permeability for 18 months in the damage zone of the causative fault of the 2008 moment magnitude 7.9 Wenchuan earthquake. The unusually high measured hydraulic diffusivity of 2.4 × 10−2 square meters per second implies a major role for water circulation in the fault zone. For most of the observation period, the permeability decreased rapidly as the fault healed. The trend was interrupted by abrupt permeability increases attributable to shaking from remote earthquakes. These direct measurements of the fault zone reveal a process of punctuated recovery as healing and damage interact in the aftermath of a major earthquake.

Collaboration


Dive into the Jim Mori's collaboration.

Top Co-Authors

Avatar

Hiroo Kanamori

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean Toczko

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuhisa Eguchi

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas H. Heaton

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Egill Hauksson

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge