Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jim Pace is active.

Publication


Featured researches published by Jim Pace.


Proteins | 2006

New insights into DHFR interactions: analysis of Pneumocystis carinii and mouse DHFR complexes with NADPH and two highly potent 5-(omega-carboxy(alkyloxy) trimethoprim derivatives reveals conformational correlations with activity and novel parallel ring stacking interactions.

Vivian Cody; Jim Pace; Kim Chisum; Andre Rosowsky

Structural data are reported for two highly potent antifolates, 2,4‐diamino‐5‐[3′,4′‐dimethoxy‐5′‐(5‐carboxy‐1‐pentynyl)]benzylpyrimidine (PY1011), with 5000‐fold selectivity for Pneumocystis carinii dihydrofolate reductase (pcDHFR), relative to rat liver DHFR, and 2,4‐diamino‐5‐[2‐methoxy‐5‐(4‐carboxybutyloxy)benzyl]pyrimidine (PY957), that has 80‐fold selectivity for pcDHFR. Crystal structures are reported for NADPH ternary complexes with PY957 and pcDHFR, refined to 2.2 Å resolution; with PY1011 and pcDHFR, refined to 2.0 Å resolution; and with PY1011 and mouse DHFR (mDHFR), refined to 2.2 Å resolution. These results reveal that the carboxylate of the ω‐carboxyalkyloxy side chain of these inhibitors form ionic interactions with the conserved Arg in the substrate binding pocket of DHFR. These data suggest that the enhanced inhibitory activity of PY1011 compared with PY957 is, in part, due to the favorable contacts with Phe69 of pcDHFR by the methylene carbons of the inhibitor side chain that are oriented by the triple bond of the 1‐pentynyl side chain. These contacts are not present in the PY957 pcDHFR complex, or in the PY1011 mDHFR complex. In the structure of mDHFR the site of Phe69 in pcDHFR is occupied by Asn64. These data also revealed a preference for an unusual parallel ring stacking interaction between Tyr35 of the active site helix and Phe199 of the C‐terminal β sheet in pcDHFR and by Tyr33 and Phe179 in mDHFR that is independent of bound ligand. A unique His174–His187 parallel ring stacking interaction was also observed only in the structure of pcDHFR. These ring stacking interactions are rarely found in any other protein families and may serve to enhance protein stability. Proteins 2006.


Bioorganic & Medicinal Chemistry | 2009

Design, synthesis, and X-ray crystal structures of 2,4-diaminofuro[2,3-d]pyrimidines as multireceptor tyrosine kinase and dihydrofolate reductase inhibitors

Aleem Gangjee; Wei Li; Lu Lin; Yibin Zeng; Michael A. Ihnat; Linda A. Warnke; Dixy W. Green; Vivian Cody; Jim Pace; Sherry F. Queener

To optimize dual receptor tyrosine kinase (RTK) and dihydrofolate reductase (DHFR) inhibition, the E- and Z-isomers of 5-[2-(2-methoxyphenyl)prop-1-en-1-yl]furo[2,3-d]pyrimidine-2,4-diamines (1a and 1b) were separated by HPLC and the X-ray crystal structures (2.0 and 1.4A, respectively) with mouse DHFR and NADPH as well as 1b with human DHFR (1.5A) were determined. The E- and Z-isomers adopt different binding modes when bound to mouse DHFR. A series of 2,4-diaminofuro[2,3-d]pyrimidines 2-13 were designed and synthesized using the X-ray crystal structures of 1a and 1b with DHFR to increase their DHFR inhibitory activity. Wittig reactions of appropriate 2-methoxyphenyl ketones with 2,4-diamino-6-chloromethyl furo[2,3-d]pyrimidine afforded the C8-C9 unsaturated compounds 2-7 and catalytic reduction gave the saturated 8-13. Homologation of the C9-methyl analog maintains DHFR inhibitory activity. In addition, inhibition of EGFR and PDGFR-beta were discovered for saturated C9-homologated analogs 9 and 10 that were absent in the saturated C9-methyl analogs.


Biochemistry | 2009

Correlations of Inhibitor Kinetics for Pneumocystis jirovecii and Human Dihydrofolate Reductase with Structural Data for Human Active Site Mutant Enzyme Complexes.

Vivian Cody; Jim Pace; Jennifer Makin; Jennifer Piraino; Sherry F. Queener; Andre Rosowsky

To understand the role of specific active site residues in conferring selective dihydrofolate reductase (DHFR) inhibition from pathogenic organisms such as Pneumocystis carinii (pc) or Pneumocystis jirovecii (pj), the causative agent in AIDS pneumonia, it is necessary to evaluate the role of these residues in the human enzyme. We report the first kinetic parameters for DHFR from pjDHFR and pcDHFR with methotrexate (MTX), trimethoprim (TMP), and its potent analogue, PY957. We also report the mutagenesis and kinetic analysis of active site mutant proteins at positions 35 and 64 of human (h) DHFR and the crystal structure determinations of hDHFR ternary complexes of NADPH and PY957 with the wild-type DHFR enzyme, the single mutant protein, Gln35Lys, and two double mutant proteins, Gln35Ser/Asn64Ser and Gln35Ser/Asn64Phe. These substitutions place into human DHFR amino acids found at those sites in the opportunistic pathogens pcDHFR (Q35K/N64F) and pjDHFR (Q35S/N64S). The K(i) inhibition constant for PY957 showed greatest potency of the compound for the N64F single mutant protein (5.2 nM), followed by wild-type pcDHFR (K(i) 22 nM) and then wild-type hDHFR enzyme (K(i) 230 nM). Structural data reveal significant conformational changes in the binding interactions of PY957 in the hDHFR Q35S/N64F mutant protein complex compared to the other hDHFR mutant protein complexes and the pcDHFR ternary complex. The conformation of PY957 in the wild-type DHFR is similar to that observed for the single mutant protein. These data support the hypothesis that the enhanced selectivity of PY957 for pcDHFR is in part due to the contributions at positions 37 and 69 (pcDHFR numbering). This insight will help in the design of more selective inhibitors that target these opportunistic pathogens.


Journal of Structural Biology | 2011

Crystallographic analysis reveals a novel second binding site for trimethoprim in active site double mutants of human dihydrofolate reductase.

Vivian Cody; Jim Pace; Jennifer Piraino; Sherry F. Queener

In order to produce a more potent replacement for trimethoprim (TMP) used as a therapy for Pneumocystis pneumonia and targets dihydrofolate reductase from Pneumocystis jirovecii (pjDHFR), it is necessary to understand the determinants of potency and selectivity against DHFR from the mammalian host and fungal pathogen cells. To this end, active site residues in human (h) DHFR were replaced with those from pjDHFR. Structural data are reported for two complexes of TMP with the double mutants Gln35Ser/Asn64Phe (Q35S/N64F) and Gln35Lys/Asn64Phe (Q35K/N64F) of hDHFR that unexpectedly show evidence for the binding of two molecules of TMP: one molecule that binds in the normal folate binding site and the second molecule that binds in a novel subpocket site such that the mutated residue Phe64 is involved in van der Waals contacts to the trimethoxyphenyl ring of the second TMP molecule. Kinetic data for the binding of TMP to hDHFR and pjDHFR reveal an 84-fold selectivity of TMP against pjDHFR (K(i) 49 nM) compared to hDHFR (K(i) 4093 nM). Two mutants that contain one substitution from pj--and one from the closely related Pneumocystis carinii DHFR (pcDHFR) (Q35K/N64F and Q35S/N64F) show K(i) values of 593 and 617 nM, respectively; these K(i) values are well above both the K(i) for pjDHFR and are similar to pcDHFR (Q35K/N64F and Q35S/N64F) (305nM). These results suggest that active site residues 35 and 64 play key roles in determining selectivity for pneumocystis DHFR, but that other residues contribute to the unique binding of inhibitors to these enzymes.


Antimicrobial Agents and Chemotherapy | 2013

Kinetic and Structural Analysis for Potent Antifolate Inhibition of Pneumocystis jirovecii, Pneumocystis carinii, and Human Dihydrofolate Reductases and Their Active-Site Variants.

Vivian Cody; Jim Pace; Sherry F. Queener; Ona O. Adair; Aleem Gangjee

ABSTRACT A major concern of immunocompromised patients, in particular those with AIDS, is susceptibility to infection caused by opportunistic pathogens such as Pneumocystis jirovecii, which is a leading cause of pneumonia in immunocompromised patients. We report the first kinetic and structural data for 2,4-diamino-6-[(2′,5′-dichloro anilino)methyl]pyrido[2,3-d]pyrimidine (OAAG324), a potent inhibitor of dihydrofolate reductase (DHFR) from P. jirovecii (pjDHFR), and also for trimethoprim (TMP) and methotrexate (MTX) with pjDHFR, Pneumocystis carinii DHFR (pcDHFR), and human DHFR (hDHFR). OAAG324 shows a 9.0-fold selectivity for pjDHFR (Ki, 2.7 nM) compared to its selectivity for hDHFR (Ki, 24.4 nM), whereas there is only a 2.3-fold selectivity for pcDHFR (Ki, 6.3 nM). In order to understand the determinants of inhibitory potency, active-site mutations of pj-, pc-, and hDHFR were explored to make these enzymes more like each other. The most unexpected observations were that the variant pcDHFR forms with K37Q and K37Q/F69N mutations, which made the enzyme more like the human form, also made these enzymes more sensitive to the inhibitory activity of OAAG324, with Ki values of 0.26 and 0.71 nM, respectively. A similar gain in sensitivity was also observed for the hDHFR N64F variant, which showed a lower Ki value (0.58 nM) than native hDHFR, pcDHFR, or pjDHFR. Structural data are reported for complexes of OAAG324 with hDHFR and its Q35K and Q35S/N64F variants and for the complex of the K37S/F69N variant of pcDHFR with TMP. These results provide useful insight into the role of these residues in the optimization of highly selective inhibitors of DHFR against the opportunistic pathogen P. jirovecii.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2015

Structure-activity correlations for three pyrido[2,3-d]pyrimidine antifolates binding to human and Pneumocystis carinii dihydrofolate reductase.

Vivian Cody; Jim Pace; Ojas A. Namjoshi; Aleem Gangjee

To further define the interactions that enhance the selectivity of binding and to directly compare the binding of the most potent analogue {N(6)-methyl-N(6)-(3,4,5-trifluorophenyl)pyrido[2,3-d]pyrimidine-2,4,6-triamine; compound 26} in the series of bicyclic pyrido[2,3-d]pyrimidine analogues of piritrexim (PTX) with native human (h), Pneumocystis carinii (pc) and Pneumocystis jirovecii (pj) dihydrofolate reductase (DHFR) enzymes, the crystal structures of hDHFR complexed with N(6)-methyl-N(6)-(4-isopropylphenyl)pyrido[2,3-d]pyrimidine-2,4,6-triamine (compound 22), of hDHFR complexed with compound 26 and of pcDHFR complexed with N(6)-methyl-N(6)-1-naphthylpyrido[2,3-d]pyrimidine-2,4,6-triamine (compound 24) are reported as ternary complexes with NADPH. This series of bicyclic pyrido[2,3-d]pyrimidines were designed in which there was a transposition of the 5-methyl group of PTX to the N9 position of the pyrido[2,3-d]pyrimidine. It was hypothesized that the N9-methyl group would preferentially interact with Ile123 of pcDHFR (and Ile123 of pjDHFR), but not with the shorter Val115 in hDHFR. Structure-activity data for this series of antifolates revealed that a trifluoro derivative (26) was the most selective against pjDHFR compared with mammalian DHFR (h/pj = 35.7). Structural data for the hDHFR-26 complex revealed that 26 binds in a different conformation from that observed in the pcDHFR-26 complex. In the hDHFR-26 complex the trifluorophenyl ring of 26 occupies a position near the cofactor-binding site, with close intermolecular contacts with Asp21, Ser59 and Ile60, whereas this ring in the pcDHFR-26 complex is positioned away from the cofactor site and near Ile65, with weaker contacts with Ile65, Phe69 and Ile123. Comparison of the intermolecular contacts between the N9-methyl group with Val115/Ile123 validates the hypothesis that the N9-methyl substituent preferentially interacts with Ile123 compared with Val115 of hDHFR, as the weaker contact with Val115 in the hDHFR structure is consistent with its weaker binding affinity compared with pcDHFR. The results for the structures of hDHFR-22 and pcDHFR-24 show that their inhibitor-binding orientation is similar to that observed in pcDHFR-26 and the pcDHFR variant (F69N) reported previously. The naphthyl moiety of 24 makes several intermolecular contacts with the active-site residues in pcDHFR that help to stabilize the binding, resulting in a more potent inhibitor.


Acta Crystallographica Section D-biological Crystallography | 2008

Structural analysis of a holoenzyme complex of mouse dihydrofolate reductase with NADPH and a ternary complex with the potent and selective inhibitor 2, 4-diamino-6-(2′-hydroxydibenz[b, f]azepin-5-yl)methylpteridine

Vivian Cody; Jim Pace; Andre Rosowsky

The structures of mouse DHFR holo enzyme and a ternary complex with NADPH and a potent inhibitor are described.


Acta Crystallographica Section D-biological Crystallography | 2012

Structure–activity correlations of variant forms of the B pentamer of Escherichia coli type II heat-labile enterotoxin LT-IIb with Toll-like receptor 2 binding

Vivian Cody; Jim Pace; Hesham F. Nawar; Natalie D. King-Lyons; Shuang Liang; Terry D. Connell; George Hajishengallis

The pentameric B subunit of the type II heat-labile enterotoxin of Escherichia coli (LT-IIb-B(5)) is a potent signaling molecule capable of modulating innate immune responses. It has previously been shown that LT-IIb-B(5), but not the LT-IIb-B(5) Ser74Asp variant [LT-IIb-B(5)(S74D)], activates Toll-like receptor (TLR2) signaling in macrophages. Consistent with this, the LT-IIb-B(5)(S74D) variant failed to bind TLR2, in contrast to LT-IIb-B(5) and the LT-IIb-B(5) Thr13Ile [LT-IIb-B(5)(T13I)] and LT-IIb-B(5) Ser74Ala [LT-IIb-B(5)(S74A)] variants, which displayed the highest binding activity to TLR2. Crystal structures of the Ser74Asp, Ser74Ala and Thr13Ile variants of LT-IIb-B(5) have been determined to 1.90, 1.40 and 1.90 Å resolution, respectively. The structural data for the Ser74Asp variant reveal that the carboxylate side chain points into the pore, thereby reducing the pore size compared with that of the wild-type or the Ser74Ala variant B pentamer. On the basis of these crystallographic data, the reduced TLR2-binding affinity of the LT-IIb-B(5)(S74D) variant may be the result of the pore of the pentamer being closed. On the other hand, the explanation for the enhanced TLR2-binding activity of the LT-IIb-B(5)(S74A) variant is more complex as its activity is greater than that of the wild-type B pentamer, which also has an open pore as the Ser74 side chain points away from the pore opening. Data for the LT-IIb-B(5)(T13I) variant show that four of the five variant side chains point to the outside surface of the pentamer and one residue points inside. These data are consistent with the lack of binding of the LT-IIb-B(5)(T13I) variant to GD1a ganglioside.


Bioorganic & Medicinal Chemistry | 2018

Targeting species specific amino acid residues: Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors and potential anti-opportunistic infection agents

Khushbu Shah; Xin Lin; Sherry F. Queener; Vivian Cody; Jim Pace; Aleem Gangjee

To combine the potency of trimetrexate (TMQ) or piritrexim (PTX) with the species selectivity of trimethoprim (TMP), target based design was carried out with the X-ray crystal structure of human dihydrofolate reductase (hDHFR) and the homology model of Pneumocystis jirovecii DHFR (pjDHFR). Using variation of amino acids such as Met33/Phe31 (in pjDHFR/hDHFR) that affect the binding of inhibitors due to their distinct positive or negative steric effect at the active binding site of the inhibitor, we designed a series of substituted-pyrrolo[2,3-d]pyrimidines. The best analogs displayed better potency (IC50) than PTX and high selectivity for pjDHFR versus hDHFR, with 4 exhibiting a selectivity for pjDHFR of 24-fold.


Journal of Medicinal Chemistry | 2009

Design, synthesis, and X-ray crystal structure of classical and nonclassical 2-amino-4-oxo-5-substituted-6-ethylthieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors and as potential antitumor agents.

Aleem Gangjee; Wei Li; Roy L. Kisliuk; Vivian Cody; Jim Pace; Jennifer Piraino; Jennifer Makin

Collaboration


Dive into the Jim Pace's collaboration.

Top Co-Authors

Avatar

Vivian Cody

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Piraino

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Li

Duquesne University

View shared research outputs
Top Co-Authors

Avatar

Edward H. Snell

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lu Lin

Duquesne University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge