Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jim-Tong Horng is active.

Publication


Featured researches published by Jim-Tong Horng.


Cell | 1998

A Function for the AP3 Coat Complex in Synaptic Vesicle Formation from Endosomes

Victor Faundez; Jim-Tong Horng; Regis B. Kelly

Synaptic vesicles can be coated in vitro in a reaction that is ARF-, ATP-, and temperature-dependent and requires synaptic vesicle membrane proteins. The coat is largely made up of the heterotetrameric complex, adaptor protein 3, recently implicated in Golgi-to-vacuole traffic in yeast. Depletion of AP3 from brain cytosol inhibits small vesicle formation from PC12 endosomes in vitro. Budding from washed membranes can be reconstituted with purified AP3 and recombinant ARF1. We conclude that AP3 coating is involved in at least one pathway of small vesicle formation from endosomes.


Journal of Biological Chemistry | 2007

Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication

Wen-Fang Tang; Shing-Ying Yang; Bin-Wen Wu; Jia-Rong Jheng; Yin-Li Chen; Chung-Hsuan Shih; Kwang-Huei Lin; Hsin-Chi Lai; Petrus Tang; Jim-Tong Horng

Enterovirus 71 is an enterovirus of the family Picornaviridae. The 2C protein of poliovirus, a relative of enterovirus 71, is essential for viral replication. The poliovirus 2C protein is associated with host membrane vesicles, which form viral replication complexes where viral RNA synthesis takes place. We have now identified a host-encoded 2C binding protein called reticulon 3, which we found to be associated with the replication complex through direct interaction with the enterovirus 71-encoded 2C protein. We observed that the N terminus of the 2C protein, which has both RNA- and membrane-binding activity, interacted with reticulon 3. This region of interaction was mapped to its reticulon homology domain, whereas that of 2C was encoded by the 25th amino acid, isoleucine. Reticulon 3 could also interact with the 2C proteins encoded by other enteroviruses, such as poliovirus and coxsackievirus A16, implying that it is a common factor for such viral replication. Reduced production of reticulon 3 by RNA interference markedly reduced the synthesis of enterovirus 71-encoded viral proteins and replicative double-stranded RNA, reducing plaque formation and apoptosis. Furthermore, reintroduction of nondegradable reticulon 3 into these knockdown cells rescued enterovirus 71 infectivity, and viral protein and double-stranded RNA synthesis. Thus, reticulon 3 is an important component of enterovirus 71 replication, through its potential role in modulation of the sequential interactions between enterovirus 71 viral RNA and the replication complex.


Nature Neuroscience | 1998

A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex.

Natalie Salem; Victor Faundez; Jim-Tong Horng; Regis B. Kelly

Reconstitution of synaptic vesicle formation in vitro has revealed a pathway of synaptic vesicle biogenesis from endosomes that requires the heterotetrameric adaptor complex AP3. Because synaptic vesicles have a distinct protein composition, the AP3 complex should selectively recognize some or all of the synaptic vesicle proteins. Here we show that one element of this recognition process is the v-SNARE, VAMP-2, because tetanus toxin, which cleaves VAMP-2, inhibited the formation of synaptic vesicles and their coating with AP3 in vitro. Mutant tetanus toxin and botulinum toxins, which cleave t-SNAREs, did not inhibit synaptic vesicle production. AP3-containing complexes isolated from coated vesicles could be immunoprecipitated by a VAMP-2 antibody. These data imply that AP3 recognizes a component of the fusion machinery, which may prevent the production of inert synaptic vesicles.


Frontiers in Microbiology | 2014

ER stress, autophagy, and RNA viruses

Jia-Rong Jheng; Jin-Yuan Ho; Jim-Tong Horng

Endoplasmic reticulum (ER) stress is a general term for representing the pathway by which various stimuli affect ER functions. ER stress induces the evolutionarily conserved signaling pathways, called the unfolded protein response (UPR), which compromises the stimulus and then determines whether the cell survives or dies. In recent years, ongoing research has suggested that these pathways may be linked to the autophagic response, which plays a key role in the cells response to various stressors. Autophagy performs a self-digestion function, and its activation protects cells against certain pathogens. However, the link between the UPR and autophagy may be more complicated. These two systems may act dependently, or the induction of one system may interfere with the other. Experimental studies have found that different viruses modulate these mechanisms to allow them to escape the host immune response or, worse, to exploit the hosts defense to their advantage; thus, this topic is a critical area in antiviral research. In this review, we summarize the current knowledge about how RNA viruses, including influenza virus, poliovirus, coxsackievirus, enterovirus 71, Japanese encephalitis virus, hepatitis C virus, and dengue virus, regulate these processes. We also discuss recent discoveries and how these will produce novel strategies for antiviral treatment.


Journal of Medicinal Chemistry | 2010

Anti-Influenza Drug Discovery: Structure-Activity Relationship and Mechanistic Insight into Novel Angelicin Derivatives

Jiann-Yih Yeh; Mohane Selvaraj Coumar; Jim-Tong Horng; Hui-Yi Shiao; Fu-Ming Kuo; Hui-Ling Lee; In-Chun Chen; Chun-Wei Chang; Wen-Fang Tang; Sung-Nain Tseng; Chi-Jene Chen; Shin-Ru Shih; John T.-A. Hsu; Chun-Chen Liao; Yu-Sheng Chao; Hsing-Pang Hsieh

By using a cell-based high throughput screening campaign, a novel angelicin derivative 6a was identified to inhibit influenza A (H1N1) virus induced cytopathic effect in Madin-Darby canine kidney cell culture in low micromolar range. Detailed structure-activity relationship studies of 6a revealed that the angelicin scaffold is essential for activity in pharmacophore B, while meta-substituted phenyl/2-thiophene rings are optimal in pharmacophore A and C. The optimized lead 4-methyl-9-phenyl-8-(thiophene-2-carbonyl)-furo[2,3-h]chromen-2-one (8g, IC(50) = 70 nM) showed 64-fold enhanced activity compared to the high throughput screening (HTS) hit 6a. Also, 8g was found effective in case of influenza A (H3N2) and influenza B virus strains similar to approved anti-influenza drug zanamivir (4). Preliminary mechanistic studies suggest that these compounds act as anti-influenza agents by inhibiting ribonucleoprotein (RNP) complex associated activity and have the potential to be developed further, which could form the basis for developing additional defense against influenza pandemics.


Life Sciences | 2005

Phosphorylation of PI3K/Akt and MAPK/ERK in an early entry step of enterovirus 71.

Wen-Rou Wong; Yu-Yun Chen; Shun-Min Yang; Yin-Li Chen; Jim-Tong Horng

Abstract Viruses have been known to subvert the anti-apoptotic pathways of the host cell in order to delay apoptosis. However, the mechanisms utilized by enterovirus 71 (EV71) to mediate anti-apoptotic activity remained undetermined. We observed that EV71 infection induced an early activation of both phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK/ERK signaling pathways. The activity of GSK3β, a downstream target of these pathways, was negatively regulated by the activation of both MAPK/ERK and PI3K/Akt. The phosphorylation of GSK3 could be inhibited by treatment with the specific inhibitors of MAPK/ERK and PI3K/Akt. Other Akt downstream targets, BAD, caspase-9 and the Forkhead transcription factor (FKHR), were not phosphorylated during the course of infection by EV71. We further demonstrated that infection by UV-irradiated, inactivated virus triggered early Akt activation but was insufficient to trigger late Akt activation. These data suggest that with the phosphorylation of MAPK/ERK and PI3K/Akt the subsequent inactivation of GSK3β is utilized by EV71 as a potential mechanism to delay host cell apoptosis.


Journal of Biomedical Science | 2010

Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity

Shin-Ru Shih; Tzu-Yun Chu; Gadarla Randheer Reddy; Sung-Nain Tseng; Hsiun-Ling Chen; Wen-Fang Tang; Ming-sian Wu; Jiann-Yih Yeh; Yu-Sheng Chao; John T.-A. Hsu; Hsing-Pang Hsieh; Jim-Tong Horng

BackgroundInfluenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.MethodsWe searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.ResultsThe 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.ConclusionsTo the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.


The American Journal of Chinese Medicine | 2009

Anti-enterovirus 71 activity screening of Chinese herbs with anti-infection and inflammation activities

Tzou-Yien Lin; Yi Chun Liu; Jia Rong Jheng; Hui Ping Tsai; Jia Tsrong Jan; Wen Rou Wong; Jim-Tong Horng

Antipyretic and toxin-eliminating traditional Chinese herbs are believed to possess antiviral activity. In this study, we screened extracts of 22 herbs for activity against enterovirus 71 (EV71). We found that only extracts of Houttuynia cordata Thunb. could neutralize EV71-induced cytopathic effects in Vero cells. The 50% inhibitory concentration of H. cordata extract for EV71 was 125.92 +/- 27.84 mug/ml. Antiviral screening of herb extracts was also conducted on 3 genotypes of EV71, coxsackievirus A16 and echovirus 9. H. cordata extract had the highest activity against genotype A of EV71. A plaque reduction assay showed that H. cordata extract significantly reduced plaque formation. Viral protein expression, viral RNA synthesis and virus-induced caspase 3 activation were inhibited in the presence of H. cordata extract, suggesting that it affected apoptotic processes in EV71-infected Vero cells by inhibiting viral replication. The antiviral activity of H. cordata extract was greater in cells pretreated with extract than those treated after infection. We conclude that H. cordata extract has antiviral activity, and it offers a potential to develop a new anti-EV71 agent.


Journal of Bacteriology | 2006

A Mobile Quorum-Sensing System in Serratia marcescens

Jun-Rong Wei; Yu-Huan Tsai; Yu-Tze Horng; Po-Chi Soo; Shang-Chen Hsieh; Po-Ren Hsueh; Jim-Tong Horng; Paul Williams; Hsin-Chih Lai

Quorum-sensing systems that have been widely identified in bacteria play important roles in the regulation of bacterial multicellular behavior by which bacteria sense population density to control various biological functions, including virulence. One characteristic of the luxIR quorum-sensing genes is their diverse and discontinuous distribution among proteobacteria. Here we report that the spnIR quorum-sensing system identified in the enterobacterium Serratia marcescens strain SS-1 is carried in a transposon, TnTIR, which has common characteristics of Tn3 family transposons and is mobile between chromosomes and plasmids of different enterobacterial hosts. SpnIR functions in the new host and was shown to negatively regulate the TnTIR transposition frequency. This finding may help reveal the horizontal transfer and evolutionary mechanism of quorum-sensing genes and alter the way that we perceive regulation of bacterial multicellular behavior.


Cellular Microbiology | 2010

Endoplasmic reticulum stress is induced and modulated by enterovirus 71

Jia-Rong Jheng; Kean Seng Lau; Wen-Fang Tang; Ming-sian Wu; Jim-Tong Horng

Picornavirus infection alters the endoplasmic reticulum (ER) membrane but it is unclear whether this induces ER stress. Infection of rhabdomyosarcoma cells with enterovirus 71 (EV71), a picornavirus, caused overexpression of the ER‐resident chaperone proteins, BiP and calreticulin, and phosphorylation of eIF2α, but infection with UV‐inactivated virus did not, indicating that ER stress was induced by viral replication and not by viral attachment or entry. Silencing (si)RNA knockdown demonstrated that phosphorylation of eIF2α was dependent on PKR: eIF2α phosphorylation was reduced by siPKR but not by siPERK. We provided evidence showing that PERK is upstream of PKR and is thus able to negatively regulate the PKR‐eIF2α pathway. Pulse‐chase experiments revealed that EV71 infection inhibited translation and activation of ATF6. Expression of BiP at the protein level was activated by a virus‐dependent, ATF6‐independent mechanism. EV71 upregulated XBP1 mRNA level, but neither IRE1‐mediated XBP1 splicing nor its active spliced protein was detected, and its downstream gene, EDEM, was not activated. Epigenetic BiP overexpression alleviated EV71‐induced ER stress and reduced viral protein expression and replication. Our results suggest that EV71 infection induces ER stress but modifies the outcome to assist viral replication.

Collaboration


Dive into the Jim-Tong Horng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John T.-A. Hsu

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Hsing-Pang Hsieh

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiann-Yih Yeh

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Sheng Chao

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge